

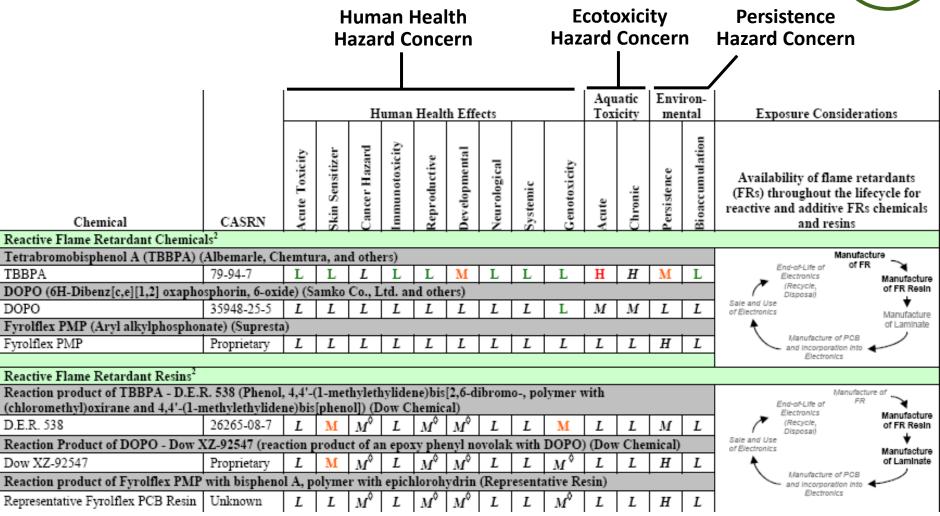
Design for the Environment Chemical Alternatives Assessments GC3 May 2012

- Chemical alternatives assessment:
 - Evaluation of chemicals of concern and potentially safer alternatives via <u>comparative hazard assessment</u>
 - Complements regulatory actions
 - Involves stakeholders from across the spectrum of interested parties
 - Provides the information on hazard from literature and models
 - Alternate approach to risk assessment or life cycle analysis
 - Consider "functional use" and "life cycle thinking"


What is a Chemical Alternatives Assessment?

- 1) Determine needs
- 2) Gather information
- 3) Involve stakeholders
- 4) Identify alternatives
- 5) Assess hazard
- 6) Apply economic and life cycle context
- 7) Apply the results

*The intended outcome is informed substitution


DfE Alternatives Assessments for Priority Chemicals

- the Environment U.S. EPA
- Tetrabromobisphenol A (TBBPA) in Printed Circuit Boards
 - combustion testing near completion
- Nonylphenol and nonylphenol ethoxylates (NP/NPE)
 - final report Spring 2012
- Bisphenol A (BPA) in Thermal Paper
 - draft report Spring 2012
- Flame Retardant Alternatives to decabromodiphenyl ether (decaBDE) used in many plastics
 - draft report Spring 2012
- Flame Retardant Alternatives to hexabromocyclododecane (HBCD) in insulation board
 - draft report Summer 2012
- Phthalates
 - list of potential alternatives Summer 2012

Example Alternatives Assessment

DfE Alternatives Assessment Criteria Endpoints

<u>Human Health Toxicity</u>

- Acute mammalian toxicity
- Carcinogenicity
- Mutagenicity/ Genotoxicity
- Reproductive Toxicity
- Developmental Toxicity
- Neurotoxicity
- Repeated Dose Toxicity
- Respiratory Sensitization
- Skin Sensitization
- Eye and Skin Irritation/Corrosivity

Endocrine Activity

€PA

Environmental Fate & Effects

- Aquatic toxicity
- Environmental persistence
- Bioaccumulation

Additional Endpoints

- Physical hazards
- Ecotoxicity
- And more

the E

• Criteria derived from GHS, EPA, authoritative lists

Reproductive & Developmental Toxicity Criteria

Endpoint (LOAEL, NOAEL)	High	Moderate	Low	Very Low
Oral (mg/kg-bw/d)	<50	50-250	> 250-1000	>1000
Dermal (mg/kg-bw/d)	<100	100-500	>500- 2000	>2000
Inhalation (vapor, mg/L/d)	<1	1-2.5	>2.5-20	>20
Inhalation (dust, mg/L/d)	<0.1	0.1-0.5	> 0.5-5	5

"BPA is a reproductive, developmental, and systemic toxicant in animal studies and is weakly estrogenic, there are questions about its potential impact particularly on children's health and the environment."

(see http://www.epa.gov/opptintr/existingchemicals/pubs/actionplans/bpa.html)

- Shopping receipts
- Credit card receipts
- ATM & banking receipts
- Ultrasound printouts
- EKG & ECG printouts
- Prescription labels
- Deli labels
- Tickets

http://www.zimbio.com/pictures/RD7q8 nFOyKs/Jessica+Alba+Out+Beverly+Hills/ Hndv07-2WS4/Meter+Maid

http://www.jpihealthcare.com/ultrasound-paper

Office of Pollution Prevention and Toxics

- BPA Alternatives hazard results
- The results presented at the roundtable are draft – the full BPA report is expected to be released by summer 2012.
- Watch this site for more information:

http://www.epa.gov/dfe/pubs/projects/bpa/index.htm

Surfactants

u.s. EPA

- The Problem:
 - All Surfactants have aquatic toxicity by interference with membranes
 - Varying rates of biodegradation

 Nonylphenol Ethoxylates (NPEs) also have degradants of concern

• Safer surfactants degrade quickly to low toxicity degradates.

Acute Aquatic Toxicity (L/E/IC50 Value)	Rate of Biodegradation			
≤1 ppm	May be acceptable if biodegradation ¹ occurs within a 10-day window			
>1 ppm and ≤10 ppm	Is acceptable if biodegradation ¹ occurs within a 10-day window			
>10 ppm	Is acceptable if biodegradation ¹ occurs within 28 days without products of concern ²			

¹ Generally, >60% mineralization (to CO_2 and water) in 28 days.

² Products of concern are compounds with high acute aquatic toxicity (L/E/IC₅₀ \leq 10ppm) and a slow rate of biodegradation (greater than 28 days).

Nonylphenol Ethoxylates and Alternatives

Chemical Class		Fate		Aquatic toxicity ¹			
Chemical	CASRN	Persistence	Degradates of concern ²	Acute	Chronic	Degradate Aquatic toxicity	Meets DfE Surfactant Criteria?
Nonylphenol ethoxylate (9EO); NPE9	127087-87-0	Μ	Y	н	Μ	VH	N
Octylphenol ethoxylate (10EO); OPE10	9036-19-5	Н	Y	Н	Н	VH	N
Oxirane, methyl-, polymer with oxirane, mono(2-ethylhexyl ether); Ecosurf EH-9	64366-70-7	L	N	М	М	L	Y

13

Hazard assessment for green chemistry

Continuous improvement towards green chemistry

Challenges necessitate careful decision frameworks

www.epa.gov/dfe

http://www.epa.gov/dfe/alternative_assessments.html

Emma Lavoie Tel: 202-564-0951

Read more here:

Lavoie, E. T., L. G. Heine, et al. "Chemical Alternatives Assessment: Enabling Substitution to Safer Chemicals." <u>Environmental Science & Technology 44(24).</u> <u>http://dx.doi.org/10.1021/es1015789</u>

The opinions expressed in this presentation are those of the author and do not necessarily represent US EPA policy.

Office of Pollution Prevention and Toxics