GC3 Webinar Series

Innovating with Intent: Science & Sustainability at Eastman

Wednesday, April 13, 2016

What is the GC3?

- Cross-sectoral, B2B network of over 90 companies and other organizations
- Formed in 2005
- Collaboratively advances green chemistry across sectors and supply chains

An Agenda to Mainstream Green Chemistry

Green Chemistry & Commerce Council

November 2015

Strategies to Mainstream Green Chemistry

- 1. Enhance Market Dynamics by continuing to build a comprehensive, ongoing understanding of green chemistry enablers, market drivers, and obstacles.
- 2. Support Smart Policies by designing and advocating for innovative state and federal policies that increase the supply of and demand for green chemistry solutions.
- 3. Foster Collaboration by facilitating the flow of information about green chemistry solutions and assembling partnerships to tackle priority challenges.
- 4. Inform the Marketplace by disseminating information about green chemistry business, economic, and health benefits, as well as opportunities and funding.
- 5. Track Progress by improving green chemistry metrics and periodically gathering and reporting data on progress.

Today's Speakers from Eastman Chemical Company

David Kossor

Carol Perkins

Mark Pavlin

Associate Toxicologist

Industry Leader, Industrial & Household Care

Sr. Technical Associate

Ground Rules

- Due to the number of participants in the webinar, all lines will be muted
- If you have a question or comment, please type it in the "Questions" box located in the control panel
- Questions will be answered at the end of the presentation

Innovating with Intent

Combining science and sustainability for a new generation of safer cleaners

April 13, 2016

Who we are

- A global specialty chemical company headquartered in Kingsport, Tennessee
- Approximately 15,000 employees and 50 manufacturing sites around the globe
- Serving customers in approximately 100 countries
- A company dedicated to environmental stewardship, social responsibility, and economic growth
- 2015 ENERGY STAR[®] Partner of the Year Sustained Excellence
 - Fifth consecutive year
- 2016 Ethisphere's World's Most Ethical[®] Companies
 - Third consecutive year
- 2016 Glassdoor Employees' Choice Best Places to Work (# 11)
- 2015 revenue of \$9.6 billion

Innovation with intent – a case study

Developing a new solvent for aqueous cleaners

- Why undertake this challenge?
 - Customer needs for innovative, differentiated end use products
 - Health, safety & environmental benefits and improvements
 - Changing regulatory requirements
 - Economic goals
- Why is this not done very often?
 - Expense
 - Time required to bring to commercial scale
 - Regulatory hurdles
 - Market risk
 - Testing and characterization requirements
 - Third party certifications (as needed)
 - Perceived innovation barrier

ΕΛSTΜΛΝ

Selecting the target market *Cleaning products - multiple forces driving change*

Regulatory pressures

- CARB
- South Coast
- EPA, OTC
- HAPS
- Chemicals of Concern
- GHS labeling

Environmental concerns

- Ozone depletion
- Air pollution
- Water/land pollution
- Water shortages
- Climate change

Mature markets

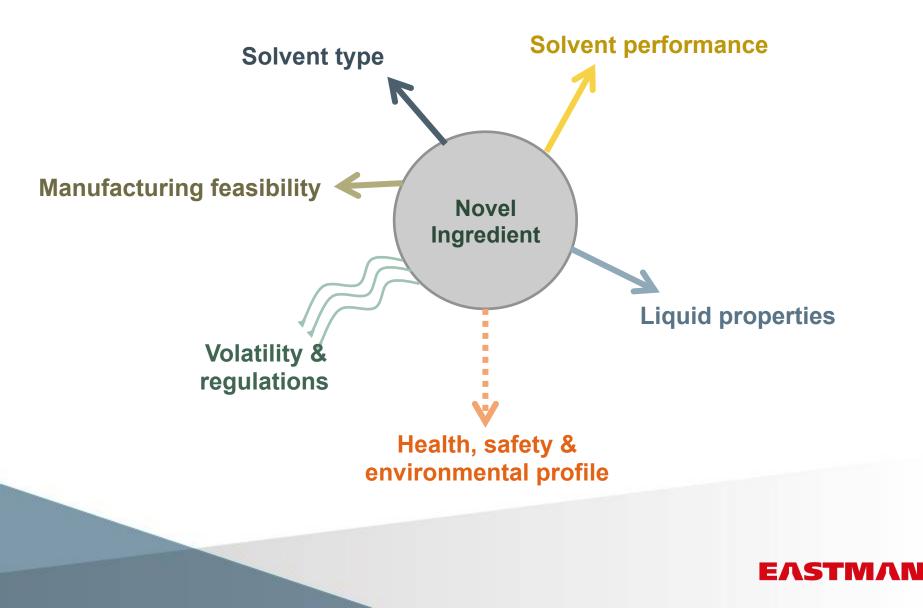
Cost pressures

- Mature markets
 "Up opprovided"
- "Un-appreciated"
 Highly competitive
- Highly competitive
- Fragmented
- One of first "costs"
 to go

Performance needs

- Disease outbreaks
- Food/surface contamination
- Hospital acquired infections
- Global travel
- Antibiotic resistance

Safety concerns


- Worker protection (acute & chronic)
- Human health and safety
- Wildlife/aquatic toxicity
- Surface protection
- Public perception

Research & Development Goals

Selection considerations

Target market requirements helped inform development

Where to start

- Determine compound selection criteria
 - Based on intended use in target market
- Construct list of possible candidates
 - Determine what compounds should be precluded
- Manufacturing feasibility
 - Can it be produced cost effectively?
- Sub-divide the data into types for prioritization
- Calculate theoretical property values based on computer modeling

ENSTMAN

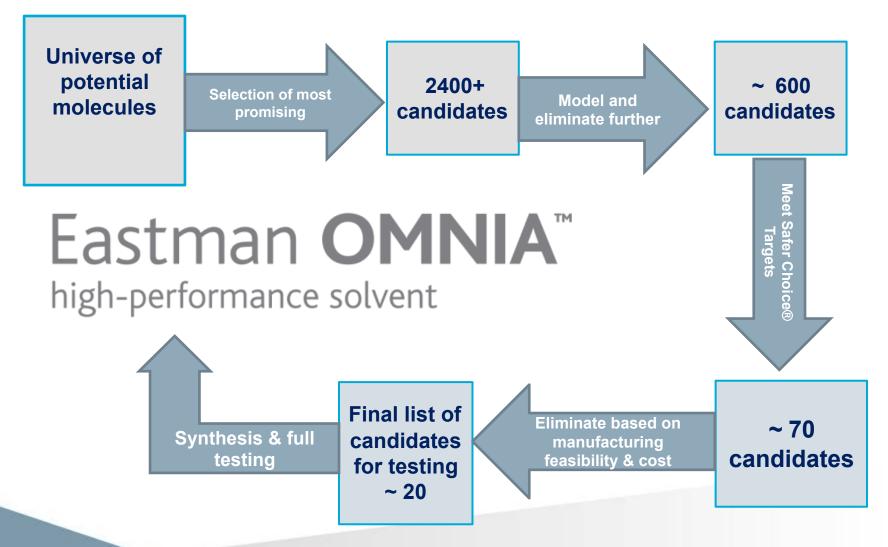
Initial screening

- Mathematical models allow assessment of suitability of candidate compounds prior to laboratory testing
- Models used
 - EPIWEB (Estimation Programs Interface Suite™)
 - Developed by the US Environmental Protection Agency's Office of Pollution Prevention and Toxics and the Syracuse Research Corporation (SRC) to quickly screen chemicals for environmental release potential
 - HSPIP
 - Hansen Solubility Parameter in Practice developed by Steven Abbott and Charles M. Hansen in order to make easier the generation and manipulation of Hansen solubility parameters

ENSTMAN

Narrowing the field

- Initial and most comprehensive list included all possible compounds of C, H, and O meeting the *a priori* criteria
 - > 2,400 compounds
- Synthesis feasibility assessment narrowed the list further
 - 596 compounds
- Final compound grouping how does it interact with water
 - Protic (alcohol)
 - Aprotic (basic)
 - Aprotic (neutral)

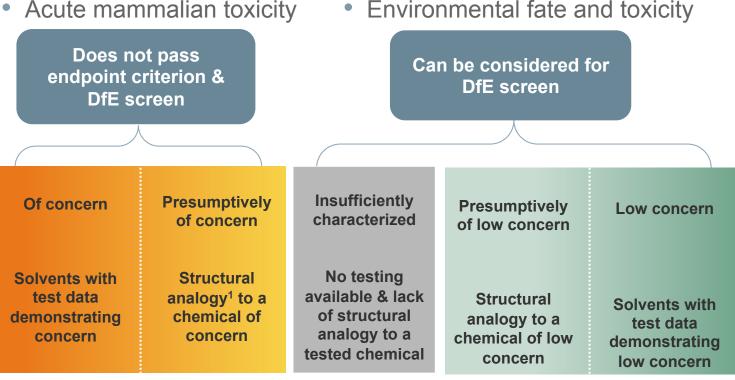


Organizing and analyzing the information

- Identification of compounds
- EPIWEB model properties
 - Model physical properties liquid properties
 - Model physical properties volatility
 - Model physical properties solvency
- EPIWEB model toxicity
 - Environmental safety
- Manufacturing feasibility
- HSPiP model physical properties
- Reported physical properties

Narrowing down to a manageable list

Best few candidates


EASTMAN

Environmental, Health & Safety Evaluation

Adherence to Design for the Environment[®] (Now Safer Choice[™])

- Distinguishing attributes of concern selected by DfE/Safer Choice to differentiate safer from less safe solvents
 - Carcinogenicity
 - Neurotoxicity
 - Acute mammalian toxicity
- Reproductive and developmental toxicity
- Repeated-dose toxicity

¹Can also include metabolic or mechanistic analogy

Toxicology program

- Program goals
 - Identify a safe and effective alternative solvent for cleaning applications
- Objectives
 - Enable product commercialization
 - Development
 - Regulatory approvals
 - Document safety endpoints to enable 3rd party certifications
 - Conserve resources using a tiered testing strategy
 - Phys/chem properties
 - In silico screening
 - In vitro testing
 - In vivo testing

- Tools
 - 12 Principles of Green Chemistry
 - Design for the Environment (DfE)/Safer Choice Solvent Screen
 - Modeling programs

Toxicology program strategy

ΕΛSTΜΛΝ

Tier I (computer modeling)

- EpiSuite[®]
 - Readily biodegradable, Bioconcentration Factor (BCF)
- Toxicity Estimation Software Tool (T.E.S.T.)
 - Mutagenicity, acute oral toxicity, reproductive toxicity

Tier II (in vitro testing)

- Mutagenicity (bacterial + mammalian cells)
- Endocrine disruption (ERTA)
- Biodegradation

Tier III (in vivo testing)

- Ecotoxicology
 - Acute toxicity (fish, plants, invertebrates)
- Acute toxicity (oral, dermal, inhalation)
- Eye/skin irritation, skin sensitization
- Repeat-dose (28-day) toxicity/developmental toxicity screen

ΕΛSTΜΛΝ

Toxicology results - final candidate

Mammalian toxicology endpoints

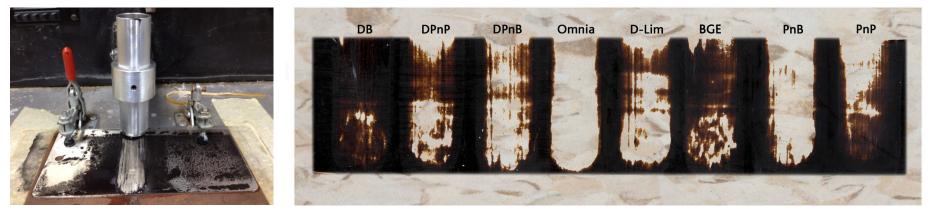
- Acute oral LD₅₀ > 5000 mg/kg in rats
- Acute dermal LD₅₀ > 5000 mg/kg in rats
- Acute inhalation (mist) LC₅₀ > 5 mg/L in rats
- Slight dermal irritation (no classification according to GHS)
- Moderate ocular irritation (GHS classification: Category 2)
- No dermal sensitization
- No effect on estrogen receptor signaling
- Not mutagenic in Ames assay (+/metabolic activation)
- Not mutagenic in mammalian cells (+/metabolic activation)
- No adverse effects in 28-day repeat dose study + developmental toxicity screen

Ecotoxicology endpoints

- Readily biodegradable
- Aquatic LC₅₀ > 100 mg/L (all species tested)

Significance of findings

- Candidate solvent was shown to be exceptionally safe
 - Testing at doses up to practical limits produced no toxicity
- Eye irritation was the only finding of concern
 - Pertains to 100% solvent
 - Non-irritating at typical formulation concentrations (1-5% solvent)

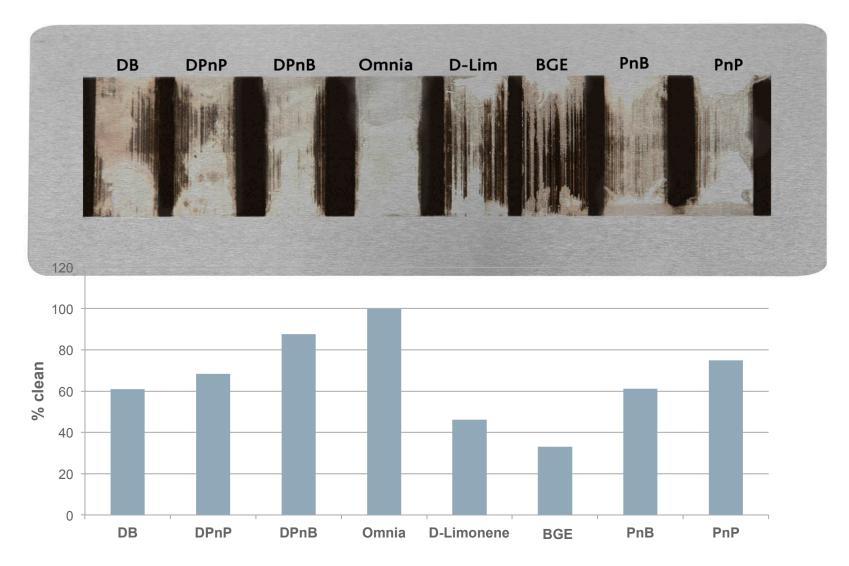


Validating Performance and Market Acceptance

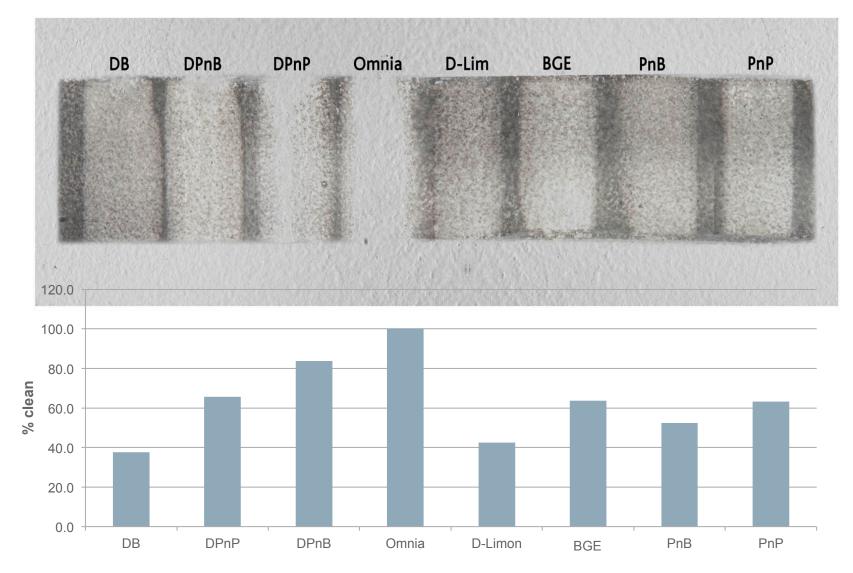
Performance testing

Eastman Omnia in aqueous cleaners

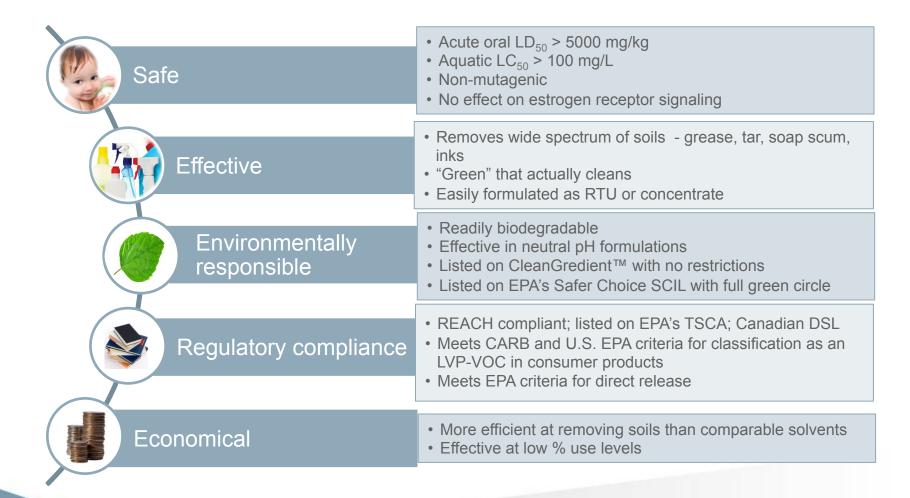
- Extensive testing showed effective removal of organics at formulation levels of 0.5% and up
 - Effective in neutral pH formulations
 - Better cleaning performance compared to common solvents



DB = Diethylene glycol monobutyl ether **DPnP** = Dipropylene glycol *n*-propyl ether **DPnB** = Dipropylene glycol *n*-butyl ether **D-Lim** = D-limonene **BGE** = Ethylene glycol monobutyl ether **PnB** = Propylene glycol *n*-butyl ether **PnP** = Propylene glycol *n*-propyl ether


Relative cleaning performance of Omnia

Greasy soil on an aluminum Q-panel


Relative cleaning performance of Omnia

Soap scum on painted wall board

Eastman Omnia high performance solvent

Meeting the cleaning product needs of tomorrow

ENSTMAN

Market validation

- Selected "alpha" partner in the industrial & institution market
 - Nyco Products, Chicago IL
- Helped with validation of performance prior to commercial launch
- Introduced three new cleaners concurrently with Eastman's market launch of Omnia

"The OM1 cleaners Powered by Omnia™ from Eastman are by far the best cleaners we've ever produced." - Bob Stahurski, President, Nyco Products

Commercial launch

Omnia high performance solvent (2013)

- ✓ Customers told us they wanted safer ingredients to use in formulations
- Performance validated
- ✓ Solvent safety validated
- ✓ CleanGredients approved no restrictions
- ✓ EPA Safer Choice approved full green circle
- ✓ EPA-permissible for direct environmental release
- Momentum building for chemical companies to innovate and provide safer options
- ✓ Met criteria for low vapor pressure (LVP) exemption under CARB and EPA guidelines
- ✓ PMN filed, TSCA approved
- ✓ DSL approved, REACH pre-registered

.....But customers weren't lining up to purchasing Omnia

Challenges we faced

- "What we have is safe enough"
 - If what they are using isn't banned or restricted, then change is difficult
- Industry cleaning tests are subjective at best
 - "Our customers are happy with the products we have"
 - "What we have is good enough"
- Omnia is a *new* material
 - Not a drop in replacement
- "We just reformulated to meet CARB rules (2012)"
 - It's too much work to reformulate again, even if it will be better and safer
- "You need high (or low) pH to clean"
 - Staying with the status quo is easier
- No "pull" from distributors, end users, and/or retailers

ΕΛSTΜΛΝ

Mitigating objections

- Educational outreach
 - Value chain discussions
 - Industry presentations
 - Trade shows
 - Media interviews
 - Articles in relevant publications
- Developed extensive formulation guidelines and starting point formulations
- Personally visited virtually every cleaning product manufacturer in the US and Canada – over and over

ENSTMAN

Lessons learned

- The "better mousetrap" argument stands, even with safer, more effective chemicals
- The market must be willing to support manufacturers who "step up" and invest in safer chemical innovations
- Regulations (government and retail) play a critical role in adoption of safer ingredients
 - Unfortunately, most companies won't change without them
- Change is harder than you hope and slower than you expect
 - "Green Chemistry" is still not mainstream

Summary

- Inventing a new solvent is the easiest part
- Innovating to provide a proven new solvent that meets the needs of the market AND will get adopted is NOT easy
 - Safety
 - Environmental
 - Regulatory
 - Performance
 - Economics
 - Inertia
- Significant *investment* in market insight, technical resources, testing, and characterization is required to bring a product to full commercialization
- All parts of the value chain from manufacturers to retailers must support and embrace these efforts for real change to happen

ENSTMAN

Thank you!

Eastman Omnia™ high-performance solvent

Changing the chemistry of clean

ENSTMAN

Upcoming Events

VAUDE - Our Journey to be the Most Sustainable Outdoor Brand in Europe Tuesday, April 26, 2016 at 12:00 PM ET

11th Annual GC3 Innovators Roundtable

May 24-26, 2016 in Burlington, VT Hosted by Seventh Generation

Thanks for joining us!

For more information about the GC3: www.greenchemistryandcommerce.org

