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How do we train the next generation of chemists to
consider hazard during the design of new chemicals
and materials?

How do we promote the adoption and commercial
success of safer chemicals and products?



What you will find when you “Ask an Expert”

The following is based on a real exchange on the DOE “Ask an
scientist” webpage:

A North Carolina teacher asks for a substitute for toluene for a high
school chemistry lab on polarity.

Answers:

1. Are you substituting because you can’Elfind any? Go to a
hardware store and get paint thinner.

2. Xylene
MTBE

4. The closest substitute solvents for toluene (solubility index of
2.4) are 1. xylene (S| = 2.5); 2. Methyl-t-butyl ether (MTBE; SI =
2.5) and 3. diisopropylether (SI = 2.2). Numbers 1 (0.02%) and 3
(0%) have the closest water miscibility as toluene (0.05%) and
MTBE has a much higher miscibility with water (4.8%)



History of Modern Chemistry: Understanding Matter
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http://www.meta-synthesis.com/webbook/30_timeline/timeline.html

History of Modern Chemistry: Turning Waste into Gold

BASF 1880’s Coal Tar to Dow 1900’s Salt water to

dyes. Bleach (Chloroalkali process) 1800’s DuPont, Black Powder
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Chemistry education today still focuses on developing the knowledge and skills needed to
help transform relatively simple feedstocks into well-defined and well-controlled high value
products with desired properties.



History of Modern Toxicology: Characterizing Poisons
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Minimata Japan
(1950°s)
Minimata Bay
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with mercury by chen.uca]
industry. Thousands adults
and children were poisoned
from eating fish contaminated
with methyl mercury.
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NC in 1954, and third
opened in Boston 1955

1970-2006
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Center at The Children’s
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http://www.toxipedia.org/display/toxipedia/History+of+Toxicology




One approach to bridging chemistry and toxicology
focuses on translating information from the
macroscopic health effects to molecular design.

Bridging data gaps and translational challenges
to create actionable understanding of hazard
. at the molecular level.

Meg Schwarzman



Strategies for Improved Molecular Design

Reduce Persistence C]

* Design for greater biodegrability;

Reduce Bioaccumulation

* Understand the role of K,,, and biodegradation;

Reduce Toxicity
* Design molecules to have low bioavailability;
* Avoid structural features known to bestow toxicity;

* Infer structural modifications expected to reduce toxicity;
— from mechanism of toxicity information;
— from structure-activity (toxicity) information.
* |sosteric substitution of molecular substituents responsible for
observed toxicity.



Design for Degradation C]

Help Degradation:

* Esters “All rules of thumb are half-truths

*  Oxygen (except ethers) some are useful.”

* Unsubstituted Linear alkyl chains | Boethling, et al. Chem. Rev. 2007, 2207.

Hinder Degradation:

* halogens, especially chlorine and fluorine and especially if there are
more than three in a small molecule (iodine and (probably) bromine
contribute to a lesser extent);

e chain branching if extensive (quaternary C is especially
problematic);

* Nitrogen: tertiary amine, nitro, nitroso, azo, and arylamino groups;

» polycyclic residues (such as in polycyclic aromatic hydrocarbons),
especially with more than three fused rings;

* heterocyclic residues, for example, imidazole;
« aliphatic ether bonds (except in ethoxylates)
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Arnot and Gobas, “A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments of organic chemicals
in aquatic organisms,” Env. Rev. 2006, 14, 257-297.



Absorption in Respiratory Tract

Sinuses

Pharynx

Bronchiole
Trachea -

Bronchial
tube |

| Alveoli

Parameters to Consider
Particles: >5 um mass median aerodynamic diameter.

Blood to Gas Partitioning Pgs: <1
Molecular Weight: > 400 Da (more importantly is a low Vapor pressure!)

Vapor Pressure: < 0.001 mmHg
Chem. Rev. 2010, 110, 5845.



plasma membrane

Where and how do
chemicals act in a cell?
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Another approach to safer design focuses on
considering chemical hazards early in the product

design process.
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Our approach focuses on iterative design and evaluation

Specif .
FuI:\ctioyn ~ Understand ﬂ
Requirements
Investigate i
{ Alternative
Approaches

.II New -l.
Collaboration ﬁ Alternatives A

& Research

Consider the broadest range of opportunities for innovation

— T s

Disruptive

Significant Investment

New Markets are needed

Long term shift in company structure

Incremental
Minimal Investment
Quick Adoption




Disruptive vs. Incremental Change

Product

Material

Substance

Challenge: Remove Polybrominated diphenyl
ethers (PBDEs) flame retardants from circuit
boards.

Complexity

Investment

>

Depth of innovation

Circuit board example

Reduce voltage
Separate high and low voltage
Change board material
Mineral-based retardants
Phosphorus-based retardants
Polymerized TBBA

TBBA to replace PBDE/PBBs

Move beyond drop-in substitution: Invest in product redesign

and basic research.



4 step process for identifying hazard data

dentify compounds of interest

List screening: Search for hazard information
pased on ‘authoritative’ lists

— Obtain detailed info from the source lists
Literature review: Search for information on
chemicals not listed by authoritative bodies

— Go to the primary literature

Fill gaps: For chemicals with little or no hazard
data, consider functional group analysis,

chemical class information, and analogies to
similar chemicals/materials




Step 1: For each potential solution consider the
types of chemical or material are you would use

Plastic Mineral/Metal Chemical/Molecule
Factors influencing overall hazard of a material

Feedstock Size Structural Features

Monomers Oxidation State Partitionin

Additives Compound Related Cogr{n ounds

Breakdown Products Form P

Notes about available information

Additives and Consider health and Can use models
Monomers are small environmental when information is
molecules if you can endpoints. unavailable. These
find the information. are more reliable for
(Often only general Must use situation persistence and
information is specific information bioaccumulation.
available) to assess relevance

Search Literature of toxicity literature.



Step 2: Search authoritative sources

Chemicals that are recognized as hazardous by authoritative
bodies
 governmental, regulatory or international consensus groups

Ready source of information on well-studied chemicals not
necessarily indication of highest hazard
e Variety of endpoints
A wide range of methods, cutoffs, priorities
* Looking for keys by the lamppost

Information just needs to be retrieved
» Search www.pharosproject.net to find authoritative evaluations

» From pharos, go to source listing (IARC, NIOSH, NTP, etc) for
more details on associated endpoint



http://www.pharosproject.net/

Step 3: Search literature for information on unlisted
chemicals

If substance is not listed on an ‘authoritative source’,
search the literature

» Wikipedia, etc. for general information
» PubMed (or Web of Science)

e Search for review papers
* Intimidated? Read several abstracts to get an impression
» HSDB (via toxnet http://toxnet.nlm.nih.gov/index.html)
Use with caution!
* Avoid “toxicity summaries” (computer generated)

e Beware outdated information

» Others (e.g., CTD)


http://toxnet.nlm.nih.gov/index.html

Move beyond Red-lists to Heath Performance
Characteristics

GROUP | HUMAN GROUP 11 + 11" HUMAN ETOX | FATE | PHY3
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CATALYST
CATALYST
OXIDANT
OXIDANT
SOLVENT |
SOLVENT

Understand that hazard is relative, and comparisons should be
made within functional use space.



Two ways to think about designing and improving the
safety of chemicals and materials:

1) Molecular design- building chemical intuition

2) Incorporating hazard analysis into design

Don’t assume chemists or manufactures are thinking about
hazard.

Be explicit, and help translate the current understanding of
hazard and toxicity.

Empower people with options and a path toward continuous
iImprovement.



Computational Approaches to
Designing Safer Chemicals

jakub@sustainabilityatoz.com



mailto:jakub@sustainabilityatoz.com

Green Chemistry Principle #4

Chemical products should be designed to
preserve efficacy of function while reducing
toxicity and other environmental hazards.

Anastas, P.; Warner, J. Green Chemistry: Theory and Practice, Oxford Press 1998



ldentification of Toxic Chemicals
vs. Design for Minimal Toxicity

* Redesign an existing chemical to
minimize biological activity

* Design a new chemical that has a
superior safety profile to chemicals in
the market




Physico-chemical
properties and
molecular
attributes

8 10 12 14

Experimental
spectroscopic
data

#1

#3

54

# 2

In chimico or in
vitro assays of
chemical
reactivity

In silico modeling
of chemical
r(f_-act_i\_/ity -




Theory Experiment

Computation



Central Dogma of Computational
Chemistry

benzo[a]pyrene diol epoxide

STRUCTURE

DYNAMICS

REACTIVITY




Approach of property-based filters

' Chemical
' Receptors / Enzymes / etc.
1 Direct Molecular Interaction
Pathway Regulation /
Genomics
Cellular Processes

Tissue / Organ / Organism Tox Endpoint



Design Guidelines for Reduced Aquatic
Toxicity: ldentifying key properties
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Aquatic Toxicity Model Systems

Fathead minnow
LC.,, 96-h assay

U.S. E.P.A.

555 chemicals

4 categories guided by EPA thresholds of concern for acute aquatic
toxicity (LC;,/ECs,: )

1-100 mg/L
0.0067 - 1.49
mmol/L

100-500 mg/L
1.49-3.32
mmol/L




P. promelas 96-hr logLC., (mg/L)

10

Acute Aquatic Ecotoxicity by MOA

EPA Fathead minnow assay: 555 chemicals
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log P and log D

* log D/log P is not sufficient as sole descriptor of aquatic toxicity:

logP
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15% of the compounds are ionized at pH 7.4
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“Safer space” definition based on
logD/logP and HOMO-LUMO gap (AE)
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How good are these design guidelines?

 Compounds that meet the property-based criteria are 10
times more likely to have no or low acute aquatic toxicity
compared to compounds that do not meet these criteria.
These results are mechanistically rationalized.

* Less than 1% chance that chemicals belonging to high
concern category for aquatic toxicity are included in the
“safer” chemical space

Kostal, J.; Voutchkova, A. et al. Proc. Natl. Acad. Sci. 2014, In Press.



Design guidelines by MOA

(a) Narcotics

(b) Electrophiles
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Validation of the
“Rule of Three”

Daphnia magna
EC.,, 48-h assay
Japan Ministry of Environment

363 chemicals

Acute Aquatic Toxicity Moderate Low
Concern Category

logD,,,,<1.7; AE>6 eV; V<620 A3 1% 1% 45% 88%

logD,,,<1.7; AE>6 eV; V<620 A3 5% 14% 55% 67%

olw




In conclusion...

* We can build “simple” guidelines for reduced toxicity that can
be applied to the design of new chemicals

 We do not need a multitude of descriptors, as commonly seen
in many QSAR models, to obtain valuable probabilistic
information regarding chemical’s toxicity

* The simplicity of these guidelines provides additional benefit
to designing around toxicity while retaining functionality



Incorporating Safety into Early Drug
Design

Nigel Greene

GC3 Green Chemistry Education Webinar Series
March 18t 2014
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Attrition Is High in the R&D Process

| ~100 Discovery Approaches

1-2
| Products

Discovery Exploratory Development Full Development
| ' Phase | Phase Il i Phase Il |
| |
I [ [ [ [ [ [ [ [ [ [ [ [ I I |
0 5 10 15
Idea > Drug
10 -15 Years

* Source: DiMasi & Grabowski, Managerial Decision Econ, 2007,28:469-479



Drugs Discovery is Time Consuming, Risky and
Expensive

’ Average Cost of Developing a New Medicine = $1.3B
, Average Time from Discovery to Patient = 10-15 Years

’ 1in 5,000-10,000 Compounds Approved by FDA

@ WORLDWIDE RESEARCH & DEVELOPMENT
Medicinal Chemistry



Toxicity Profiling in Drug Discovery

Screen
Development

& High Through-

put Screenin

Target

PoC  [?

Primary
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Med |:> Potency/
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Efficacy in Pivotal
In Vivo Models

|

I 1

1 1 73

Prospective
Tox Profiling

Target Safety
Assessment

In Silico / in vitro

¢ |®

In Vivo Toxicity
Studies

assessmen
@
Characterization,
Retrospective Mechanisms,
Tox Profiling Modeling,
(Issue Biomarkers &
Management) | Screening for STR
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Attrition Causes

Causes for Drug Attrition: Changing?

Kola & Landis, Nature Reviews Drug Schuster et al, Curr. Pharm. Des.,
Discovery, 2004, 3, 711 2005, 11, 3545
m Toxicity = Toxicity/Clinical Safety
Clinical Safety
= DMPK = DMPK
B Formulation
m Efficacy m Efficacy
m Strategic/other B Strategic/other
B Cost of Goods
2000 1992-2002
Strateglclother 20081 Toxicity
23% 31%
Precﬁnicaf
Efficacy 59% Presented at
e \ J (231 0 A%S
Preclinical oston
9% Clinical Safety by J Empfield, AZ
Formulatlon DMPK 15% ’
2% 7%

“Approximately 10% of new chemical entities (NCEs) show serious
adverse drug reactions (ADRs) after market launch.”?

1. Pharmaceutical Benchmarking Forum Study 2008

2. Schuster, D., Laggner, C., and Langer, T. In Antitargets, Vaz. R. J., Klabunde, T. Ed.; Methods and Principles in Medicinal Chemistry; Wiley-\VCH: 2008, Ch.1, p3.

@ WORLDWIDE RESEARCH & DEVELOPMENT
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The Basic Question

What design features signpost risk?




Factors that Influence Safety Profiles

PDE-4 inhibitors are linked to

emesis and vasculitis
. COH

/1,

Ariflo

O

Primary pharmacology

Origins of adverse
safety profile

Physicochemical
properties

OH
Lipophilic basic compounds at

O risk of:
Phospholipidosis
HO tBu X )
O QT interval prolongation
Terfenadine

@ WORLDWIDE RESEARCH & DEVELOPMENT
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D1 activity is linked to fremor

D1 and Tremor
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Clozapine
Clozapine causes agranulocytosis

and forms reactive metabolites




Structural Alerts: 81 drugs withdrawn for

idiosyncratic toxicity reasons

M aniline group

¥ quinone group 67%

m erich Ar group

acyl glucuronide group

M quinolone
W hydrazide/hydrazine
™ Michael

" benzodioxolane
M none group

W other STAs (singletons)

@ WORLDWIDE RESEARCH & DEVELOPMENT
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The role of physiochemical properties

35
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ClogP TPSA_CCG

Total Drug | TPSA<75 | TPSA>T5
ClogP >3 0.41(38)
ClogP<3 | 1.08(27) | 0.39(57)

A compound that flags both properties is ~six times more likely to
cause findings in a IVT study at Cmax<10uM than a compound that
does not flag in either of these properties.

Expert Opin. Drug Metab. Toxicol. (2009) 5(8)
@ WORLDWIDE RESEARCH & DEVELOPMENT
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Off Target promiscuity
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I
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Toxicity as a Function of Promiscuity

B Clean @ 10uM Total
B Toxic @ 10uM Total

Ratio of promiscuous to non-
promiscuous compounds

Cerep TPSA<T75 | TPSA>75
ClogP >3 0.44 (13)
ClogP <3 0.80 (18)

‘ |
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4 b9 10-14 20-24 a0-48
# Azzayz > B0 Zinh

e promiscuity defined as >50% activity in >2 Bioprint assay
out of a set of 48 (selected for data coverage only)
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Efficiently Characterizing Promiscuity

LSelected subset of 15 targets — The Promiscuity Panel
UCovers GPCRs, lon channels, PDEs, transporters

Scatter Plot
3 |
[«})
E’ 35
S
(2} H u
g 30 |
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o &= mE N u
S e [ |
2o =» m g
e m [ | Modified Gini-Coefficient:
QL Comparing Measures of
S = l Promiscuity and Exploring Their
© . : v
- 1 Relationship to Toxicity
N
o : :
> 5 Xiangyun Wang and Nigel Greene
o Molecular Informatics , in Press
2 0 10 20 30 40 50

Average %l across the 15 Targets in the Promiscuity Panel

Average inhibition of the 15 targets generally correlates well with
overall promiscuity
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Dose vs. Exposure
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Properties related to LOAEL

Sutherland, J.J., et al., J Med Chem, 2012. 55(14): p. 6455-66.

LOAEL = Lowest Observable Adverse Effect Level
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The Problem with LOAELs

The observed NOAEL and LOAEL are heavily reliant on where doses are set in a study.
What if a compound would cause adverse effects only above an 8uM concentration?
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A New Classification System

- Uses a scoring system to grade the severity of toxicity seen at each
dose in the study

 Arbitrary scale based on impact of each finding
» Redness (1); inflammation (10); degeneration (100); death (1000)

« A cumulative score of 2 100 considered to be “significant” level of toxicity

« Using a threshold of 100, estimate what Cmax would give rise to
significant toxicity for each compound

« Use this Toxic_Cmax to rank order compounds

« Now a continuous scale rather than two-bucket system

* No extrapolation for studies where significant toxicity not observed
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Toxic Cmax Approach

Severity Graphical Representation of ETS Qutcome as a Function of Exposure
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Variability in Toxic Cmax

Scatter Plot
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Correlations to ToxicCmax

Density Distribution Plot of cVDSS cVDSS ~ Cerep Promiscuity

Red: Tox_CMAX < 3uM
Yellow: Tox_CMAX b.t. 3 & 30uM
1 Green: Tox_CMAX >30uM
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c.f. Relating Molecular Properties and in Vitro Assay Results to in Vivo

Drug Disposition and Toxicity Outcomes
J. Med. Chem., 2012, 55 (14), pp 6455—6466
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Comparing Assays to Toxic Cmax

Red line: Compounds where ToxicCmax < 3uM
Yellow line: Compounds where ToxicCmax between 3 & 30uM
Green line: Compounds where ToxicCmax >30uM
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- “Diverse” dataset combining of basic, netrual and acidic
compounds
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The Importance of lonization State

Acidic compounds .
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Variable Importance from modeling Toxic_Cmax
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Predicted vs. Actual Toxic_Cmax

Scatter Plot

400

100

40

-
o

1N

Actual Toxic Cmax

0.4 —
=
0.1
0.04 =
|
001 Colored by Therapeutic Area
2 4 6 10 20 40 60 100

Predicted Toxic_Cmax

@ WORLDWIDE RESEARCH & DEVELOPMENT
Medicinal Chemistry




Therapeutic Index

* Most decisions in drug development are based on a
therapeutic index (TI)

— The difference between the efficacious concentration and the
toxic concentration

* An adequate Tl determines if compound progresses in
development (pass) or is stopped (fail)

* Acceptable levels for Tl are often situational depending
on many factors

— Indication
— Duration of treatment

— Patient population, etc
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Figure 6b: Distribution of compounds by pass or fail call that have

a Tl <30 or TI>30
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In Vivo Toxicity is (mostly) Multifactorial

« Troglitazone — withdrawn for liver failure
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Summary

r
| In our small molecule discovery programs we employ a predictive
platform which detects around 60% of the compounds which cause
low dose toxicity in preclinical species (with a <10% false positive

\_rate). J

* In 2013 Pfizer utilized this approach to help guide the early chemistry efforts
on >70 discovery projects. This approach initiates safety considerations
early in projects, and is a framework for evaluating the predictivity of new
assays.

« Building such a tool relies heavily on well characterized training
compound sets and excellent engagement across biologists, chemists and
computational scientists.

*  Our current focus for this approach is to address the impact of dose
projection, and to model severity of toxicity.

« Value is in steering away from no hope chemistry, better survival and
resource utilization
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Thanks for joining us!

For more educational webinars
or to learn about the GC3:

www.greenchemistryandcommerce.org

GREEN CHEMISTRY &
7*® COMMERCE COUNCIL
Business Mainstreaming Green Chemistry
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