Green Chemistry Education Webinar Series

Toxicology and Why You Should Care

January 21, 2014

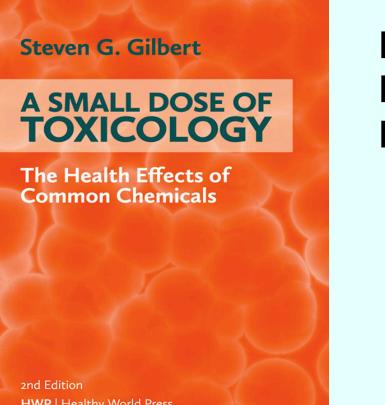
Today's Speakers

Steven G. Gilbert Cal Baier-Anderson

Institute of Neurotoxicology & Neurological Disorders Director

U.S. Environmental Protection Agency Toxicologist

3M Medical Department Lead Toxicology Specialist


A Nano-Dose of Toxicology

An Very Brief Introduction to the Principles of Toxicology

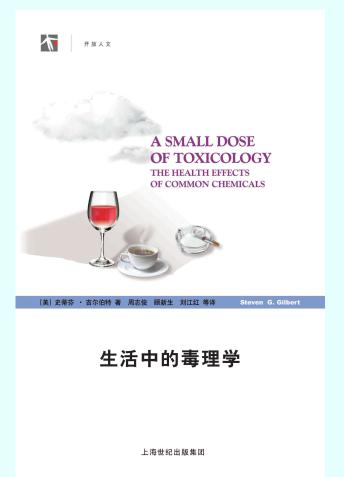
"Toxicology and Why You Should Care" GC3 Green Chemistry Education Webinar Series The Green Chemistry and Commerce Council (GC3) January 21, 2014

> Steven G. Gilbert, PhD, DABT www.asmalldoseof.org www.toxipedia.org

A Small Dose of Toxicology 2nd Edition

Free e-book **Healthy World** Press

PowerPoint slides for each chapter


HWP | Healthy World Press

See: www.asmalldoseof.org -- smdose

Principles of Toxicology – 01/21/14

Chinese Edition - A Small Dose of Toxicology

Published by Shanghai Scientific and Technical Publishers in December, 2013.

Translated by a team of Chinese toxicologists led by Drs. Zhijun Zhou, Xinsheng Gu, Jianghong Liu, et al

See: www.chinesesmalldose.org

Milestones of Toxicology

Milestones of Toxicology

Steven G. Gilbert1 and Antoinette Hayes2

¹Institute of Neurotoxicology and Neurological Disorders and ²Northeastern University

Contact information: Steven G. Gilbert at sgilbert@innd.org - more information at www.asmalldoseof.org - © 2005 Steven G. Gilbert

Antiquity 3000 BCE – 90 CE	Shen Nung 2696 BCE The Faller of Chinese Inducene, noted for tasting 365 herbs and said to have died of a toxic overdese	Ebers Papyrus 1500 BCE Egyptas records contains 10 pages on santemy and physology: tourcology, spella and re-atment recorded on payyrus	Gula 1400 BCE Sumerian teits refer to a female deny. Gula This mythological figure was astecated with charms. spells and posters	Homer \$50 BCE Wrote of the use of charytow pairconed with venom in the epic tale at <i>The Odpsoo</i> r and <i>The Illad</i> From Greek somkow arrow pairen	Socrates (470.399 BCE) Charged with religious hereay and corruping the morals of local youth. Death by Hemlock - active chemical alkaloid comine	Hippocrates (460.377 BCE) Greek phynecau observational approach to bunne direare and treatment, founder of modern medicine, named cancer after treeping grab	Mitheridates VI (13)-63 BCE) Tested antidates to parton: on hunsel fand used parsoners as gunnen pigs. Created mistures of substrances lending to term matheridate	L. Cornelias Sulla S2 BCE Let Corvelta de recarte et vengéar law againt privaning people in privaners, could not buy, sell or parcer paison	Cleopatra (69.30 BCE) Experimented with strychines and other poisone on prisoaers and poor Committed suicide with Egypting App	Pedanius Dioscorides (40-90 CE) Great pharmacologist and Payro can, wrote De Matarna Medica basis for the modern plasmacopeix	Mount Vesuvius Erupied August 24 th 79 CE City of Pampesi & Mercolastion demoyred and baned by and Pinythe Elder suffacated by volcanic gates
Middle Ages 476 CE – 1453	Greek Fire 673 CE Ancient "napaim" described by the Crusaders as constraing of napiha, quicklime, sulphur, & ratigeter	Ergot Outbreak 994 CE 40,000 died from eating contaminated wheaveys- caused gangrene - known as <i>St: Aschony's Pire</i>	Moses Maimonides (1135-1204) Jewith philosopher & physician wrate Treance on Poiscone and Thent Autidone	Albertus Magnus (1193-1280) Demunican fir ar wrote extenus rely on compatibility religion and actence and irol ated arrenic in 1250	Raymundus Lullius 1275 Ether discovered hy Spansh chemit and later called "sweet vimel"	Knights Templars (1118-1307) Christian military order alleged to be expert with portons They searched for the "Elizir of Life"	Petrus de Abano (1250-1315) Italian scholle Immol Sard Hippocrates and Oalen to Latin Wrote book ompostorie De Fenerie	The Black Death (1347-1351) Bubenic & protumenic plague revenged Europe leaving the highest number of casualities in history	Venetian Council of Ten - 1419 Group of peogle who carried out marders with gesson for a fee	Zhou Man 1423 Chinese explorer Jost 10005 at crew members from uranum exporuse while mimng lead in Jahmu Australia	Rodrigo & Cesare Borgia (1400-1500) Poironad many poople in fully for political and monetary gan. Used aurenic in a corrocitoris called "La Cantrella"
Renaissance 14th–16th Centuries	Leonardo de Vinci (1452-1519) Experimented with bosocumulation of passons manmals and called the procedure "passager"	Pope Clement VII (1478-1534) Died (possibly murdered) after eahing amanita Phalloades, (desth cap) mushiroom.	Paracelsus (1493-1541) "All adminances are poisons, there is none which is not a poison. The right dose differentiates a poison from a remedy."	Georgius Agricola (1494-1555) Wrote De Re Adviatilize published 1556 The most comprehenave back on mining and metallurgy	Catherine Medici (1519-1589) Queen of France, expert asrasso, tested poisons on the poor and the sick	William Piso 1640 In Brazil, studied effects of Cephaeliz jpecazuanha, an emetic, treat dysentery	Shakespeare (1564-1616) From Romeo & Juliet - act 5 "Here's to my lowel O true quarke Thus with a loss I dee"	Hieronyma Spara -1659 Roman wonien & fortune tëller organzed weakhy wives and sold them a arsenic discr to munter their husbands	Catherine Monvoisin (LaVoisin) (1640-1680) Accused surcers and convicted poisoner to France She was burned at the stake	Guilia Tophania (1635-1719) Italian weman who supplied porson (arsenic) to wives looking to murder their husbands. Later executed by strangulation.	King Louis XIV 1682 Passed royal decree fortholing apothecames to sell arsenic or poisonous rubstances except to persons known to them.
1700s	Devonshire Colic 1700's Devonitins England High insidenco of lead colic demixing contaminated coler	John Jones 1701 English doctor weate The Agateries of Ogene Rewool of described many treasments of oppun, but diso withdrawal and addiction	Richard Meade (1673-1754) In 1702, wrote A Adecharacd Account of Portons dedicated to portons makes, summals and plants	Carl Wilhelm Scheele (1742-176) Sweich apatheouy and thomat, discovered oxygen, nature, dialottie, mengasiese, and hydrogen spinde.	Percival Pott (1714-1788) Britati plotacan who recognized cancer of the scrothar in dammey tweeps: Chancey Sweeps: Act of 1788	Felice Fontana 1767 halian chemist and physiologist this was the first to study weather first to study	Freidrich Serturner (1783-1841) Indeted an atlated from quium popyr in 1803 Henamed It Adorphines after Morpheus, the Greek god of dreams	Francoise Magendie (1783-1855) Disotviered enetime and studied effects of strychrane & cysenide Called the father of repenmential pharmacrology	Fowler's Solution 1786-1936 Polasman arrente solution presented as a general fond and used firmy-bold 1786 to 1983 Offed by Charles Darwin?	Pierre Ordinaire 1797.1915 Greated diare ung ubmittle opdaarzed and fold by Henry Pemod. Abdintle was used by Viscent War. Gegle bumient in 1915. adject of Dega.	Mateu J.B.; Orffla (1787-1853) Counderset the fatter of motion toursology in 1815 be polytoined Drate das Potcon, which destribed the symptoms of pencents
1800s	Thomas de Quincey (1785-1859) Englisti witer breanne adulte ti ognerin nerty 1600's and generi. Bater en 1521	James Marsh (1794-1846) Cheruit developed maj perforte the March test for averace. The improved March test was used formacally for the first time 1340 during the trail of Marie Latinge.	Robert Christison (1797-1882) Tonicologin at lite versity of Edinburgh serote Deame on Passon happons: for what hop porson happons: for what hop thet contained pruseic and	Claude Bernard (1813-1878) French physologist andred the effects of carbon monoside and ourse: influenced by Francoi as Magenide	A scanio Sobrero (1812-1888) Dalian chemit, in 1847 discovered mtrogivenn, a powerfd: explorite and vasculator Alfred Nobel sear hir student	Theodore G. Wormley (1826-1897) Wrote the first American book purcens in 1869 antited Addreschemistry of Percer	Joseph Caventon & Pierre Pelletier 1820 French plantacies anland quantar from back of Chebono tree in back of thinry harmacy	Arsenic Act 1851 Required arrents to be colored with sort or indigote protect accelerated protocing Friedrich Gaedcke 1855 Isolated cocame 800	Louis Lewin (1854-1929) German pharmacelogis studeed and classified halluarn ogerac plares dochols and other psychoactive compounds	Emili Fischer 1852-1919 Arris and a state of the state of	Constantine Fahlberg Saccharin 1879 Constantine Fahlberg water worken gins the laboratory of its Rematen (rijs) m 1870
1900-1930s	Upton Sinclair (1878-1968) Publichest Die Augge Unter Since Since Chronicled the ustamtary conditions in mess packing industry in Chinago	Pure Food and Drugs Act - 1906 Havey Wehington Walay, MD. (1844- 1958); Law generation of matheetic, ashibiting of matheetic, ashibiting medicines, said lapses	Chemical Warfare A Reality 1915 Germa Chema Fritz Haber (1865-1934) developed bistering agers: used in WW; chlorine and cyanide garse	U.S. Prohibition 1919-1933 Lawthat make the production and sale of acobolic betwenages allegal but very profitable.	Geneva Protocol 1925 Bained use of chemical weapons Updated in 1903 as the "Chemical Weapons Convention" to include banning production:	Ginger Jake 1929 Alcoholic tonic produced illegally during produced adultes with TOCP produced OPIDN Gake Leg), affecting 50,000 adults	Hawk's Nest Incident 1927-1935 Hundreds of black wetkens die finon aute aticoare while degeng tunnel for a hydroidemus project for Unión Cartude	Gerthard Schrader (1903-1990) German Chamat actidentaly mide nerve agects, sami, tabun, sconsen, and cyclosum while developing unscentricide 1938; agents used in WWII	Elixir Sulfanflamide 1937 Food Drug & Cosmetic Act 1938 (100 de. diethylene gyred as a vetacle	Albert Hofmann 1938 Eysengis axid (LSD) symdos Lakoyatory (avw Norgatus) in 1943 Hoffman tested LSD on hmuself	Martinana Tax Act 1937 Federal criminal uffeneo (possossi produce, or depetue hemp. Non-medical use prohibited in Childrens (1915) and Tesna (1919)
1940-1960s	DDT - 1939 Recognized as intectide by the Swise icients Paul Hermann Muller, who was awarded the 1948 Nobel Prize in Physology and Medicine Banned in 1972	2,4-D - 1946 Developed daring WW II at Beinsh Rothamsted Experimental Statten, by J.H. Quartela and sold commercially in 1946. Ured to control breadleaf plants	Minimata Japan (1950's) Minimata Bay with mercury by chemical indurty. Thousands adults and children were poisoned from esting fish contamisated with methyd mercury	Poison Control Centers 1953 First, Charage 1953, second at Dake University, NG in 1954, and third upmed in Bestion 1955	Journal of Tox. & App. Pharmacology 1959 Adopted by SOT until 1981 founded Fundamentals of Applied Toxicology.	Thaildomide (1959-1960's) Drug prescribed to prégnant women for merming néhoses induced buth défocts Frances Kd.sey of PD& Horked approval in U.S	Society of Toxicology 1961 Founded March 4, 1961 first formal meeting held April 15, 1962 (9 founders, 183 charter members)	Alice Hamilton (1869-1970) Pathologist and first Finade Schuly member at Harvan Medical School Associated worksite chemical hazardi worksite chemical hazardi worksite alemical hazardi of lead & nubber on workers	Rachel Carson (1907-1964) Scientist lead made against file use of dehicrosphenolynchion adhee (DDT) a pethode and persklent organic pollutant Caron neven looks including Slient Syring published 1962.	Occupational Safety & Health Act 1970 Act passed on December 19, 1970 to ensure every worker a safe and healthful workplace OSHA	U.S. EPA 1970 Established to consolidate lederal research, on monitoring, standard setting and enforcement activities to ensure linama. Resourcemental protection
1970-2006	Mr. Yuk 1971 Symhol adopted bythe Bithhush Foston Conter at The Children's Rospital in 1971. Used to educate children and parents about poroson and by prevent actidental postonings	Iraq – Mercury 1971 Path seed grain coated with a inercury fungicade was trapically commend by fragically differing aver 40,000 people	Bangladeshi 1970s Arsenic poisoning Tubewelts, drilled to provide clean dimking water, are contaminated by arsenic resulting in millions of people harmed.	First Modern Toxicology Textbook 1975 Louis J. Casaren & John Douli deted, Toxicology The Banc Science of Pottom, in 1975	Love Canal Disaster 1978 August 7,1978 US Freidenti Jimmy Catte declared Love Canal a fedral emergency. 42 million paunis of ore: 200 elemanat conseringent Loves Canal, drimophing many laves	IUTOX 1980 Estemational Vision of Constraints Toxicology American Board of Texicology (ABT) 1979 – First estam Aug. (980) Academy of Toxicological Sciences (ATS) USI	Times Beach 1983 Dangeroux levels of droam descovered in Times Beach. MO: EPA order the town evacuation and makes it a Superfund atte All readents gene	Bhopal Disaster Dec. 3, 1984 Accidental release 40 mites loss of methyl accognitie frama Utano Cattede futata pest-talle plan in heart of city rentited in the Billing thousands, and taipand 1000 of thousands	Chernobyl Accident April 26, 1986 The Chernobyl mattee prover plact accident products's plume of radioactive debas over the Ubanet, Eastern Europe, Scandinaves, UE and mattern UBA	Tokyo Subway Sarin Gas Attack 1995 Member of religious group Aun Stinniky released sam gas in Splace in Tokyo subway, kiling 12 md injunng 6,000	Viox (1999-2004) A noniterial stati-inflammatery. CO2X a retrieve inhibitor for treatment of ortroardinate, produced by Merck & Co and volumianty withdrawn because of risk of hand

A Small Dose of Toxicology

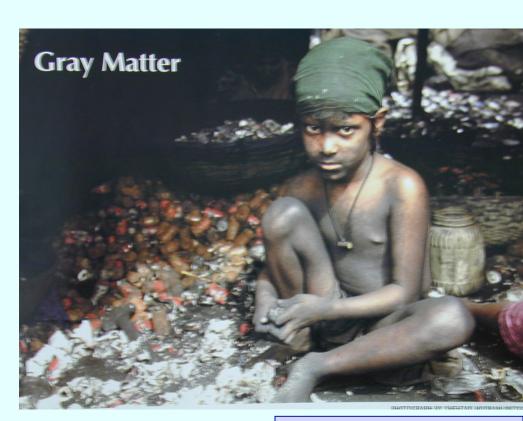
Principles of Toxicology – 01/21/14

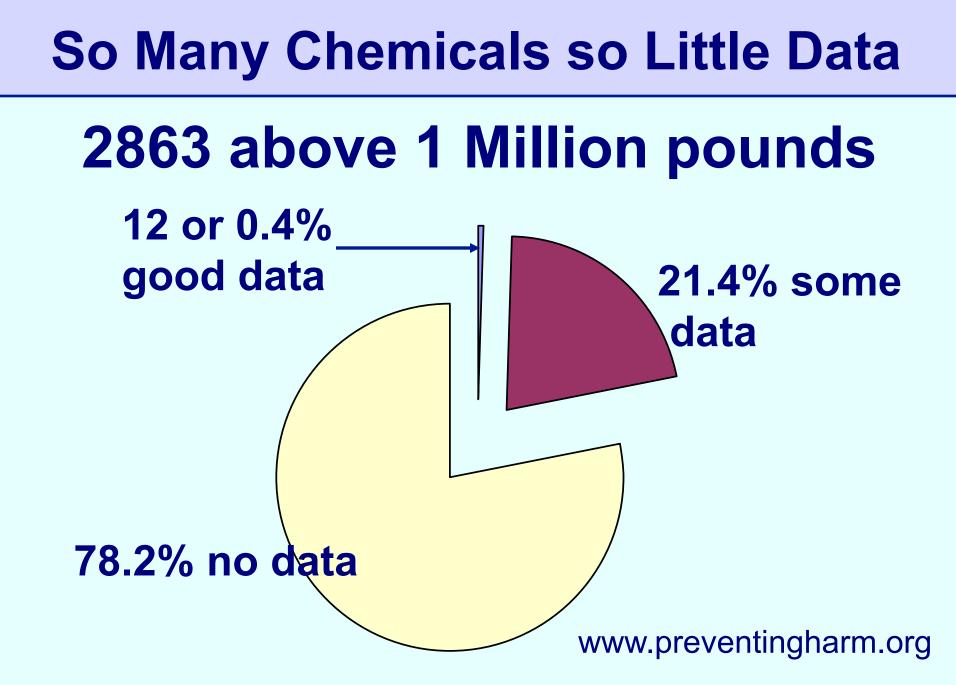
www.toxipedia.org

A free toxicology encyclopedia and resource center. Toxipedia – scientific information in the context of history society and culture.

Teaching resources section.

Inheriting The Future


- Global Warming
- Burning Coal
- Coal Waste
- Mercury from Coal to Fish
- Nuclear waste
- Chemical body burden
- Chemical use
- Sustainability



Child Health

A Small Dose of Toxicology

A Small Dose of Toxicology

Principles of Toxicology - 01/21/14

The Consequences

- Nearly 12 million children (17%) under age 18 in the US suffer from one or more developmental disabilities
- Learning disabilities 5-10% of kids in public school
- ADHD 3-6% of all school kids, maybe higher

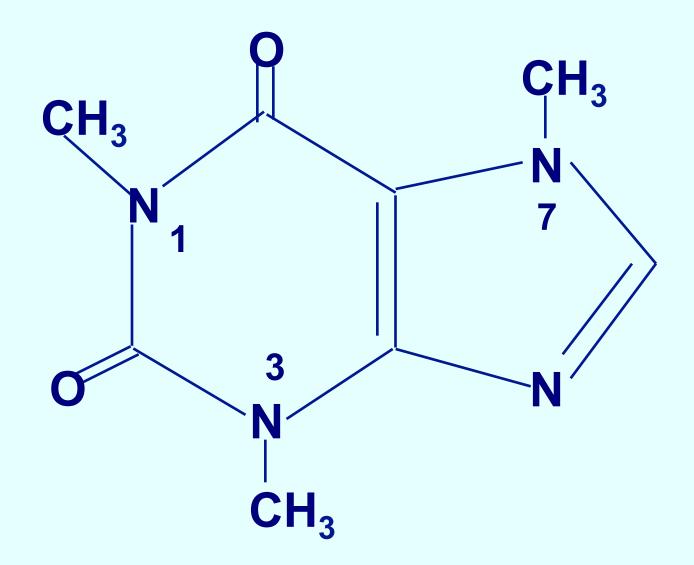
Toxicology Definitions

The study of poisons or the adverse effects of chemical and physical agents on living organisms.

Human & Environmental Health

"Conditions that ensure that all living things have the best opportunity to reach and maintain their full genetic potential."

Steven G. Gilbert, 1999


Gilbert SG. Ethical, legal, and social issues: our children's future. Neurotoxicology. 2005;26:521-30.

Precautionary Principle

"When an activity raises threats of harm to human health or the environment, precautionary measures should be take even if some cause and effect relationships are not fully established scientifically."

Wingspread Conference, 1998.

What Is This?

Dose / Response

Risk = Hazard X Exposure

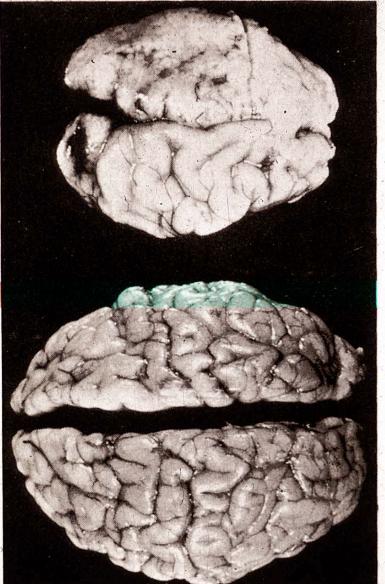
Individual Sensitivity

A Small Dose of Toxicology

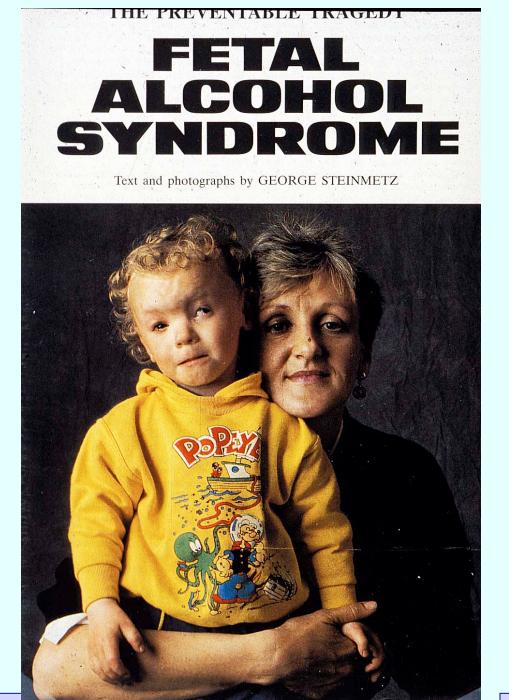
Principles of Toxicology – 01/21/14

Thalidomide

 Introduced in 1956 as sedative (sleeping pill) and to reduce nausea and vomiting during pregnancy
 Withdrawn in 1961


- Discovered to be a human teratogen causing absence of limbs or limb malformations in newborns
- ➢ 5000 to 7000 infants effected
- Resulted in new drug testing rules

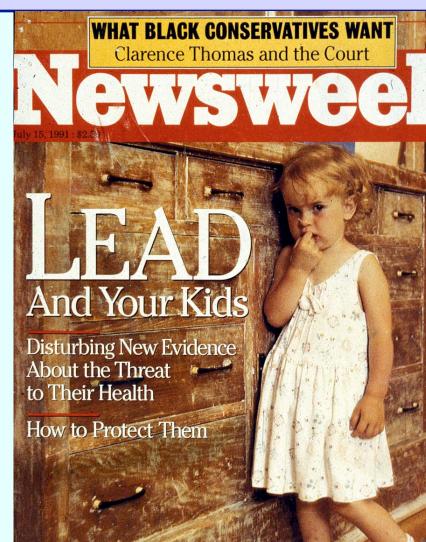
What Is This?


нн H - C - C - OHн н

(CH_3-CH_2-OH)

Effects of Prenatal Alcohol

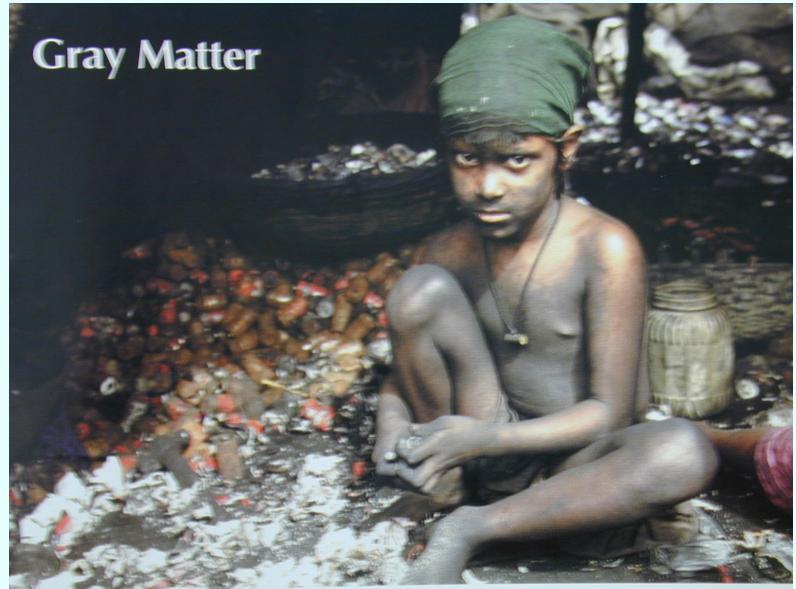
Principles of Toxicology – 01/21/14



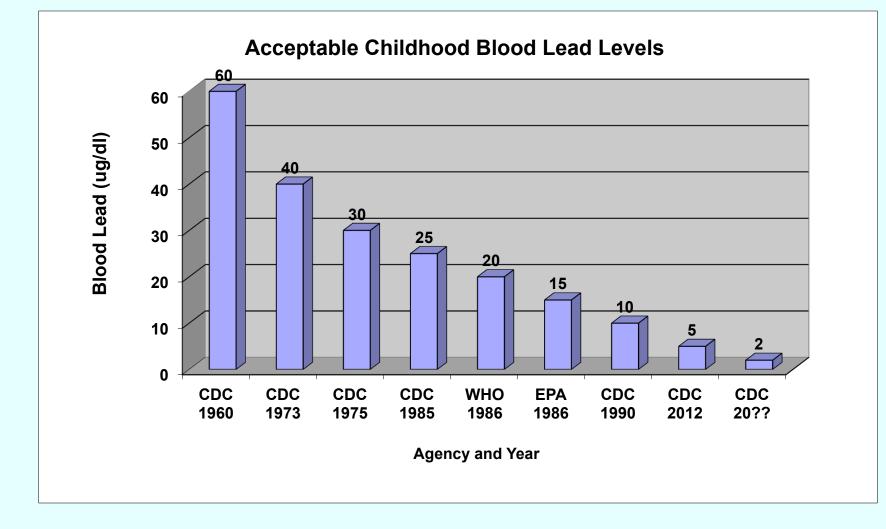
A Small Dose of Toxicology

A Small Dose of Lead

Lead In Homes


Lead Makes the Mind Give Way

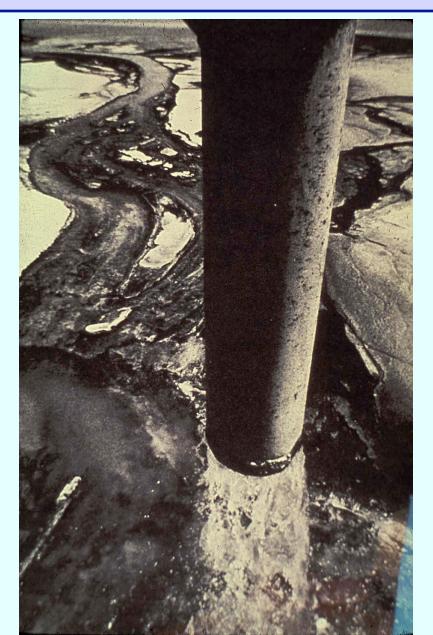
Greek 2nd BC


Principles of Toxicology – 01/21/14

Recycling Lead

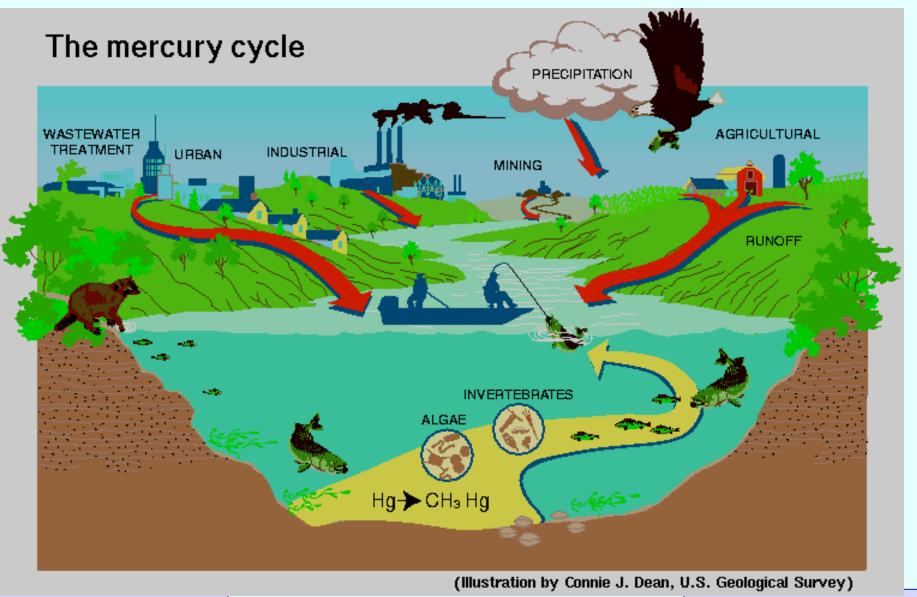
מעמדתהם אפון פא פעבעדאה אמתם אווימבדבב

Agency Blood Lead Levels


A Small Dose of Toxicology

Hg – Solid Enough to Sit On

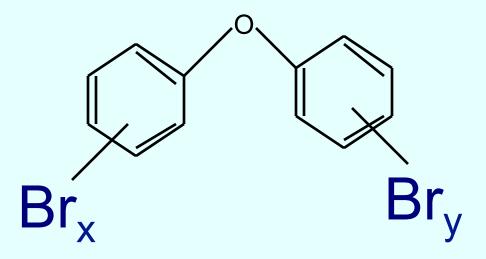
A Small Dose of Toxicology


Discharge in Minamata Bay

A Small Dose of Toxicology

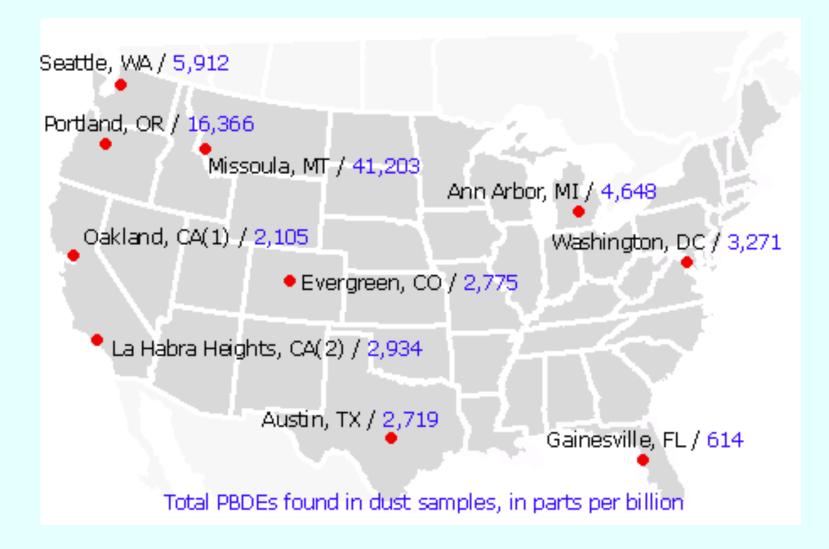
Principles of Toxicology -- 01/21/14

The Mercury Cycle



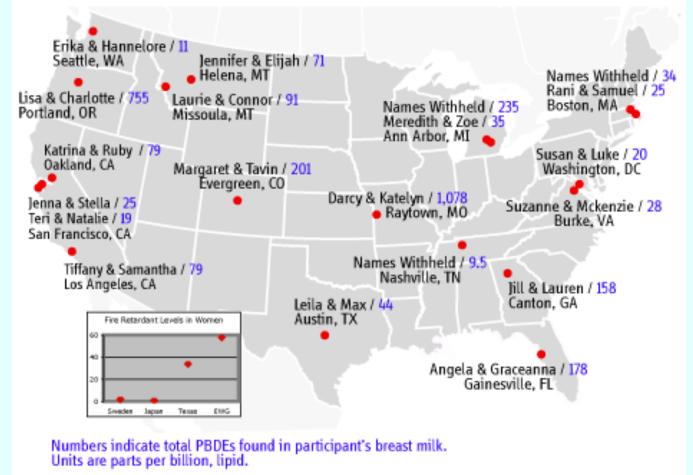
Fetal Effects of MeHg

Structure of PBDEs


PolyBrominated Diphenyl Ether

X & Y are number of Bromine atoms Common Penta, Octa, and Deca

PBDEs in House Dust (ppb)


From EWG - Toxic Fire Retardants Contaminate American Homes - http://www.ewg.org/reports/inthedust/summary.php

Principles of Toxicology – 01/21/14

PBDEs in Breast Milk (ppb)

EWG BREAST MILK STUDY PARTICIPANTS & THEIR BABIES

From EWG - Toxic Fire Retardants in Breast Milk from American Mothers - http://www.ewg.org/reports/mothersmilk/es.php

Principles of Toxicology – 01/21/14

Susceptibility & Variability

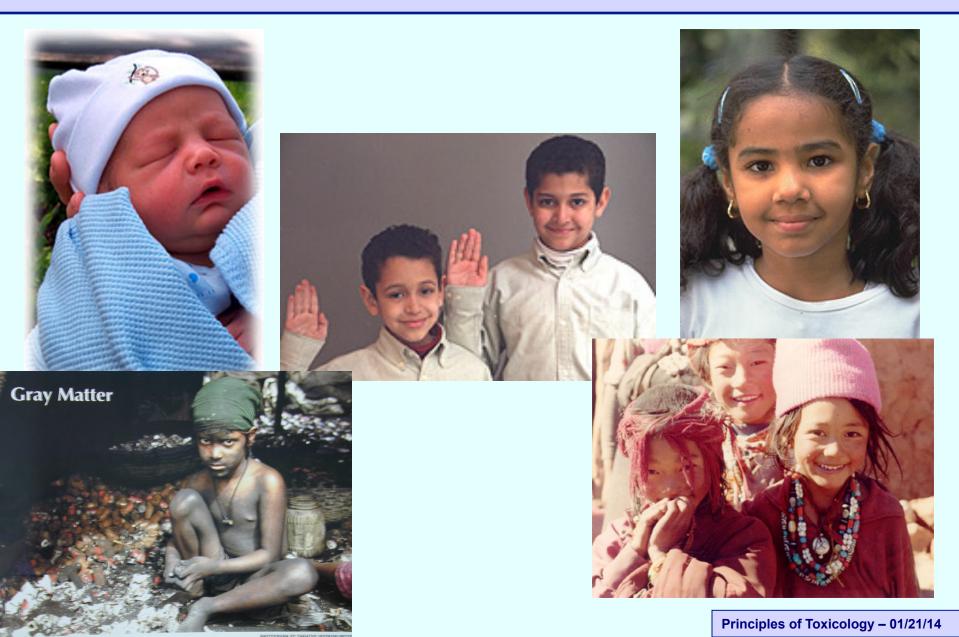
- Young or Old
- Male or Female
- Individual Variability
- Genetics Differences
- Species Differences

Precautionary Principle

"When an activity raises threats of harm to human health or the environment, precautionary measures should be take even if some cause and effect relationships are not fully established scientifically."

Wingspread Conference, 1998.

Central components

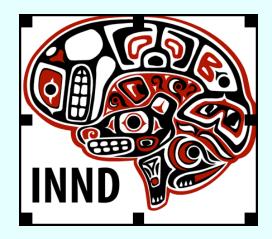

- Taking preventive action in the face of uncertainty
- Shifting the burden of proof/responsibility to the proponents of an activity
- Exploring a wide range of alternatives to possibly harmful actions
- Increasing public participation in decision making

Wingspread Conference, 1998.

Knowledge - Responsibility

- Children have a right to a safe, fair and healthy environment
- Ethical Responsibility to share and use of knowledge
- Duty to promote health and well being of children
- Thoughtful public health advocate

The Potential of Children


Principles of Toxicology

Authorship Information

Steven G. Gilbert, PhD, DABT E-mail: sgilbert@innd.org Web: www.toxipedia.org

A Small Dose of Toxicology

EPA United States Environmental Protection Agency

DfE Methods for Hazard Evaluation in Alternatives Assessment

Cal Baier-Anderson January 21, 2014

the Enditioning

2

DfE Approaches to Hazard Evaluation:

- Background on DfE
- What is safer?
- Explanation DfE criteria
- Examples

Background on DfE

- Goals
 - Non-regulatory approach to incentivize development of safer products
 - Identification and selection of safer chemical ingredients
 - Life cycle impacts are considered
- Central Elements
 - EPA technical tools and expertise
 - Multi-stakeholder participation
- Programs
 - Safer Product Labeling Program
 - Alternatives Assessments Program

the En

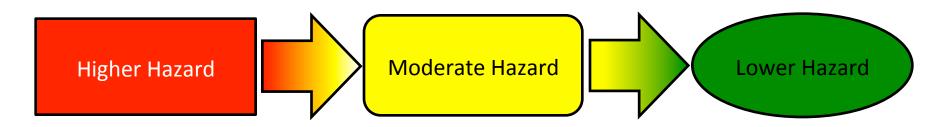
Alternatives Assessment Program

- Chemical alternatives assessments:
 - Identify and evaluate potentially safer alternatives
 - Involve stakeholders from across the spectrum of interested parties
- The outcome of an alternatives assessment:
 - Provides the best information on hazard from literature and models (Based on New Chemicals Program approaches)
 - Helps stakeholders choose safer alternatives
 - Provides information that manufacturers can use to create more sustainable products
 - Helps minimize the potential for unintended consequences by reducing the likelihood of moving to alternatives that could pose a concern

Green Chemistry and Hazard

- Prevent Waste
- Maximize Atom Economy
- Use Less Hazardous
 Chemical Syntheses
- Design Safer Chemicals
- Use Safer Solvents and Reaction Conditions
- Design for Energy Efficiency

- Use Renewable Feedstocks
- Avoid Chemical Derivatives
- Use Catalysis
- Design for Degradation
- Analyze in Real-time for P2
- Minimize Potential for Accidents


the E

What is Safer?

6

- Risk is a function of HAZARD and EXPOSURE
 - Safer ≈ less risk
- Conventional approach is to control exposure
 - Exposure controls can and do fail
- Alternatively, substitute with LOWER HAZARD chemicals
 - Predicated on understanding <u>relative</u> continuum of hazard
 - Consider other factors that may alter risk equation

Importance of Functional Use

- The functionality of a Functional use classes chemical is related to structure and p-chem properties
- Criteria can be tailored to functional class to distinguish safer chemicals

- - Surfactants
 - Solvents
 - Chelating and sequestering agents
 - Fragrances
 - Colorants
 - Preservatives

Hazard Endpoints

Human Health Toxicity

- Acute mammalian toxicity
- Carcinogenicity
- Mutagenicity/ Genotoxicity
- Reproductive Toxicity
- Developmental Toxicity
- Neurotoxicity
- Repeated Dose Toxicity
- Respiratory Sensitization
- Skin Sensitization
- Eye and Skin Irritation/Corrosivity
- Endocrine Activity

l ⊕ FP∆

Environmental Fate & Effects

- Aquatic toxicity
- Environmental persistence
- Bioaccumulation

Additional Endpoints

- Physical hazards
- Ecotoxicity (birds, bees)
- And more

EPA Threshold-Based Criteria

Endpoint (LOAEL, NOAEL)	High	Moderate	Low	Very Low		
Oral (mg/kg-bw/ d)	<50	50-250	> 250-1 000	>1000		
Dermal (mg/kg-bw/ d)	<100	100-500	>500- 2000	>2000		
Inhalation (vapor, mg/ L/d)	<1	1-2.5	>2.5-2 0	>20		
Inhalation (dust, mg/L/ d)	<0.1	0.1-0.5	> 0.5-5	5		

- Chemicals with data
- Considers exposure route
- Examples of thresholdbased criteria:
 - Acute toxicity
 - Acute aquatic toxicity
 - Bioaccumulation
 - Repeated dose toxicity
 - Reproductive & developmental toxicity

EPA Evidence-Based Criteria

- Strength of evidence linking a chemical to an effect
 - Cancer, Mutagenicity
- Examples
 - HIGH CONCERN
 - Evidence of adverse effects in humans or
 - Conclusive evidence of severe effects in animal studies
 - MODERATE CONCERN
 - Suggestive animal studies for chemical or analogs or
 - Chemical class/SAR known to produce toxicity
 - LOW CONCERN
 - No concern identified

the E

Consider Chemical Properties

,	CASRN: 9	CASRN: 95235-30-6								
	MW: 292.3	MW: 292.35 MF: C ₁₅ H ₁₆ O ₄ S Physical Forms: Neat: Solid								
О О О О О О О О О О О О О О О О О О О	$\mathbf{MF:} \ \mathbf{C}_{15}\mathbf{H}_{16}$									
	Use: Devel	Use: Developer for thermal paper								
SMILES: O=S(=O)(c1ccc(O)cc1)c2ccc(OC(C)C)cc2										
Name: 4-hydroxyphenyl 4-isoprooxyphenylsulfone										
Synonyms: Phenol, 4-[[4-(1-methylethoxy)phenyl]sulfonyl]-; 4-(4-isopropoxyphenylsulfonyl)phenol; Phenol, 4-[[4-(1-methylethoxy)phenyl]sulfonyl]-; 4-Hydroxy-										
4-isopropoxydiphenylsulfone; D-8; DD-8; ALD-2000										
Polymeric: No	Polymeric: No									
Oligomers: Not applicable										
Metabolites, Degradates and Transformation Products: None identified										
Analog: Bisphenol S (80-09-1)	Analog Stru	ctures:								
Endpoint(s) using analog values: Reproductive effects, developmental effects, and repeated	_									
dose effects	Structure:									
Analog: BPS-MPE (63134-33-8)	Suuciure.									
Endpoint(s) using analog values: Acute mammalian toxicity; eye irritation; dermal irritation;	Bisphenol S (80-09-1)	BPS-MPE (63134-33-8)								
skin sensitization	Name:	1	``´´							
Structural Alerts: Phenols, neurotoxicity (U.S. EPA, 2010)										
Risk Phrases: 51/53 - Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment (ESIS, 2011).										
Risk Assessments: None identified										

the Enuit

Summarize Data

Developmental Effects	MODERATE: Estimated based on analogy to bisphenol S. In a reproduction/developmental toxicity								
	screening test, oral exposure of parental rats to the analog bisphenol S resulted in marked systemic effects								
	and decreased number of live offspring (PND 4) at the highest dose level (300 mg/kg-day with a NOAEL of								
	60 mg/kg-day. Based on the NOAEL, a Moderate hazard designation is selected.								
Reproduction/	Parental toxicity:	ECHA, 2011; Professional	Adequate; using the analog bisphenol						
Developmental Toxicity	NOAEL = 10 mg/kg bw-day	judgment	S, data are for an adequate guideline						
Screen	LOAEL = 60 mg/kg bw-day		study (OECD 421) reported in a secondary source.						
	Reproductive toxicity:								
	NOAEL = 60 mg/kg bw-day								
	LOAEL = 300 mg/kg bw-day								
	(Estimated by analogy)								
	Potential for developmental toxicity	Professional judgment	Estimated based on reported						
	(Estimated by analogy)		experimental data for the analog						
			bisphenol S.						

Office of Pollution Prevention and Toxics **12**

Compare Chemicals

the Environment U.S. EPA

This table only contains information regarding the inherent hazards of the chemicals evaluated. Evaluation of risk considers both the hazard and exposure. The caveats listed in the legend and footnote sections must be taken into account when interpreting the hazard information in the table below.

VL = Very Low hazard L = Low hazard M = Moderate hazard H = High hazard VH = Very High hazard — Endpoints in colored text (VL, L, M, H, and VH) were assigned based on empirical data. Endpoints in black italics (VL, L, M, H, and VH) were assigned using values from estimation software and professional judgment.

The highest hazard designation of a representative component of the oligomeric mixture with MWs <1,000.</p>

‡ The highest hazard designation of any of the oligomers with MW <1,000

§ Based on analogy to experimental data for a structurally similar compound.

			Human Health Effects						Aquatic Toxicity		Environmental Fate						
Structure	Chemical (for TSCA inventory name and relevant trade names see the individual profiles in Section 4.8)	CASRN	Acute Toxicity	Carcinogenicity	Genotoxicity	Reproductiv e	Dev elopmental	Neurological	Repeated Dose	Skin Sensitization	Respiratory Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistence	Bioaccumulation
	Oligomeric and Polymeric Alternatives																
-၀းဝယ္၀းဝ	D-90 Phenol, 4,4'-sulfonylbis-, polymer with 1,1'-oxybis[2-chloroethane]	191680-83-8	L	М	L	L	L	М	L	L		М	VL	L	LÏ	VHI	H ₁
.o0.	DD-70 1,7-bis(4-Hydroxyphenylthio)-3,5- dioxaheptane	93589-69-6	L	М	L	М	M§	М	M⁵	M §		H§	M ⁵	H	Н	H	L
-0%,0+0-	Pergafast 201 N-(p-Toluenesulfonyl)-N'-(3-p- toluenesulfonyloxyphenyl)urea	232938-43-1	L	М	L	М	н	L	М	L		L	VL	н	н	VH	L

Office of Pollution Prevention and Toxics 13

Others are conducting Alternatives Assessments using related methods:

- States and NGOs
 - Washington, Maine and TURI in Massachusetts
 - Clean Production Action's (CPA) GreenScreen[®]
 - Green Chemistry & Commerce Council (GC3)
- Companies and trade associations
 - HP
 - Nike
 - Phosphorous, Inorganic & Nitrogen Flame Retardants Association (PINFA)

DfE Home Page http://www.epa.gov/dfe/

DfE Alternatives Assessments: <u>http://www.epa.gov/dfe/alternative_assessments.html</u>

DfE Alternatives Assessments Criteria:

http://www.epa.gov/dfe/alternatives_assessment_criteria_for_hazard_eval.pdf

Cal Baier-Anderson

baier-anderson.caroline@epa.gov

Office of Pollution Prevention and Toxics 15

Toxicology and Alternatives Assessment

Robert Roy, PhD, DABT and Robert Skoglund PhD, DABT, CIH

Alternatives Assessment (AA)

 The process for identifying and comparing potential chemical and non-chemical alternatives that can be used as substitutes to replace chemicals or technologies of high concern*

Goal: Reduce risk by reducing hazard

Risk = (Hazard) x (Exposure)

* Dr. Ken Geiser, Lowell Center for Sustainable Production

2

AA: Toxicologist's Roles/Responsibilities

- The primary responsibility of the toxicologist* is to carryout, document and communicate the [chemical] health hazard assessment
 - Also consider attributes beyond hazard, especially health risk
- The toxicologist may also be involved to a limited degree in the initial identification and/or prioritization of chemical alternatives (that will need health hazard assessment)
 - However, this step most is often performed by product developers, etc. and results communicated to the toxicologist

*Preferred attributes: 1) a formal educational background in the sciences; 2) further training via continuing education (internal and external); 3) practical toxicological/health hazard assessment experience; and 4) professional certification(s) [or working towards]

AA: Toxicologist's Roles/Responsibilities

- The toxicologist needs to ensure that the chemical alternative is an improvement
 - Can't simply move away from a chemical of concern \rightarrow need to move to a better option
 - · Hazard (need to balance multiple health endpoints)
 - Performance (make sure the chemical still "works")
 - Cost
 - Need to avoid "regrettable" chemical substitutions

AA: Chemical Hazard Assessment

- 3M has a long history of preparing comprehensive, toxicologically defensible and transparent chemical hazard assessments
 - Health, physical and environmental assessments
- Chemical health hazard assessments used for (examples):
 - Hazard communication
 - SDSs, labels and training (workers, customers, other technical staff, etc.)
 - Risk (safety) assessment preparation
 - Helping 3M to make informed decisions regarding chemical use

Chemical Hazard Assessment

- Comprehensive evaluation of the available scientific evidence [of a chemical] in order to determine its human health effects (designated as health hazard endpoints)
 - Need to access (and interpret) available data
 - Important considerations (examples):
 - Data scientifically validated (or can they be)? \rightarrow Reliability

Example: Assignment of a Klimisch score (*RTP* **25**: 1-5, 1997)

- Statistical significance of the results
- Biologically plausible?
- Determination of an "adverse" health effect vs. a "non-adverse" effect
- Weight of Evidence (WoE) evaluation

WoE \rightarrow evaluation of all (+), (-) and equivocal data together

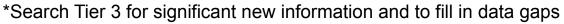
Adverse vs Non-Adverse Health Effect

- A change in the morphology, physiology, growth, development, reproduction or life span of an organism, system, or (sub) population that results in an impairment of functional capacity, or an impairment of the capacity to compensate for additional stress, or an increase in susceptibility to other influences (OECD; REACH)
- Change in morphology, physiology, growth, development or lifespan of an organism which results in impairment of functional capacity or impairment of capacity to compensate for additional stress or increase in susceptibility to the harmful effects of other environmental influences (WHO/IPCS)

Adverse vs Non-Adverse Health Effect

- <u>Critical</u> to health hazard assessment that the assessment is based on adverse health effects and not non-adverse (*e.g.* "adaptive effects)
 - Doing this can involve a significant amount of work
 - Involves use of available guidance and professional judgment and experience
- Guidance resources:
 - GHS Chapter 3 sections 3.9.2.7.3 and 3.9.2.8.
 - ECETOC Technical Report 85 (2002)
 - *Toxicologic Pathology* **30(1)**: 66-74 (2002)

(1) Gather available health hazard data on the chemical(s)


- Tiered Literature Search Strategy (CAS # specific)
 - Tier 1 3M data and comprehensive, peer-reviewed, regularly updated, authoritative/reliable, easily accessed secondary sources and chemical classifications (examples):
 - Ariel WebInsight
 - ECHA REACH Registration database
 - ATSDR Toxicology Profiles
 - EPA IRIS
 - EU RARs
 - IPCS INCHEM
 - *Documentation* for OELs (TERA/OARS WEELs; ACGIH TLVs, etc.)

9

- Tiered Literature Search Strategy
 - Tier 2 Other secondary sources (examples):
 - IUCLID datasheets;
 - IARC Monographs and List; Prop65; other "lists"
 - NTP study data/abstracts/reports
 - OECD SIDS Documents
 - Tier 3* Factual and bibliographic databases (including primary literature) (examples):
 - NLM TOXNET ; NLM PubMED; SCOPUS
 - <u>TSCA</u> <u>Test</u> <u>Submissions</u> (TSCA 8e submissions test reports, etc.)
 - · Vendor raw material SDSs, technical data sheets, etc.
 - Internet search (be careful)

(2) Conduct a comprehensive review of the assembled toxicology/health hazard data

- Data on the chemical in question
- Data on an analog (single chemical and chemical classed in these because of data group)
- Data from models
- All [adverse] health hazard endpoints are considered
 - Remember: "Considerations" (see: slide 5)
 - "Adverse" health effect vs. a "non-adverse" effect is very important!

Health Hazard Endpoints¹

- Acute Toxicity
 - Oral (LD₅₀), Dermal (LD₅₀), Inhalation (LC₅₀)
- Skin Irritation or Corrosion
- Eye irritation or Corrosion
 - Serious Eye Damage
- Sensitization
 - Dermal and Respiratory
- Genotoxicity/Mutagenicity
 - Germ Cell Mutagenicity
- Carcinogenicity

- Reproductive Toxicity
- Specific Target Organ Toxicity -Single Exposure
- Specific Target Organ Toxicity -Repeated Exposure
- Aspiration Hazard

¹See : Appendix A to 2012 OSHA HazCom Standard (1910.1200) and GHS (5th edition; 2013) for more detailed information on each endpoint

(3) Try to "fill" data gaps

- Often requires experience and professional judgment
- Re-visit the literature search strategy
 - Primary literature; updated databases, etc.
- Read-Across approach
 - Really brought to the forefront because of REACH
- QSAR
 - Involves computer modeling (in silico approaches)
 - Require specialized training, and equipment, etc.

Read-Across (Analog Approach)

- A technique for data-gap filling where endpoint information from one chemical (source) is used to predict the same endpoint for another chemical (target) which is considered to be similar in some important aspect relating to that endpoint, *e.g. mode of action*, toxicokinetics, metabolism etc.
 - May be for a qualitative or quantitative

- Read-Across (Category Approach)
- Substances whose physicochemical and/or toxicological and/or ecotoxicological properties are likely to be similar or follow a regular pattern as a result of structural similarity, may be considered as a group, or 'category' of substances
 - One very common "similarity" is a common functional group
 - Example: N=C=O (isocyante functional group)

(4) Document and Use the Health Hazard

- Can be done with the Health Hazard Profile (HHP)
 - Is a comprehensive document for a chemical for all endpoints assessed
 - Is peer-reviewed by at least two other toxicologists
 - Results (with interpretation, etc.) communicated to requestor(s)
 - Updating HazCom documents, labels, etc.
 - Regulatory classification of chemicals
 - Use in product development (safer alternative)
 - Results are also used as a starting point for risk/safety assessment by other toxicologists

Documentation: HHP

PARTIAL VIEW OF A SUBSTANCE HHP

Endpoint	Route	3M Hazard Code [GHS Classification]	Test Qualifier	Test Result	Endpoint Summary		Exposure Duration
CAN Carcino- genicity	Inhalation	2 [Carcinogen, Category 2]	Carcino- genicity	Positive	EXPERIMENTAL/OCCUPATIONAL CONDITIONS & OBSERVATIONS: Ethylbenzene was tested by inhalation exposure in mice and rats. In mice, it increased the incidence of lung adenomas in males and of liver adenomas in females. In male rats, it increased the incidence of renal tubule adenomas and carcinomas. An increase in the incidence of renal adenomas was seen in females only after step-sectioning. Ethylbenzene is considered to be possibly carcinogenic to humans (IARC Group 2B). REFERENCE: IARC (2000). IARC Monographs, Volume 77. AUTHOR:		
CAR Cardiac (general) - P/R	Inhalation	0 [Not classified for Specific Target Organ Toxicity (Repeat Exposure)]	NOAEL	3.2 mg/L	PEER REVIEWER: EXPERIMENTAL/OCCUPATIONAL CONDITIONS & OBSERVATIONS: Male and female Fischer 344 rats exposed to ethylbenzene concentrations of 0, 75, 250, or 750 ppm (= 0, 0.32, 1.1, or 3.2 mg/L) for 6 hours/day, 5 days/week, for up to 2 years (103-104 weeks) displayed no adverse cardiovascular effects. REFERENCE: ATSDR (1999). Toxicological Profile for Ethylbenzene. AUTHOR: PEER REVIEWER:	Rat	2 years
NEU CNS depression	Inhalation	4 [Specific Target Organ Toxicity (Single Exposure), Category 3]	LOAEL	>0.43 mg/L	EXPERIMENTAL/OCCUPATIONAL CONDITIONS & OBSERVATIONS: In a human study, an 8-hour exposure above the occupational exposure limit value (100 ppm) generated complaints of fatigue, sleepiness, headache, and irritation of the eyes and respiratory tract. The LOAEL was therefore >100ppm (>0.43 mg/L). REFERENCE: IPCS (1996). EHC Monograph 186: Ethylbenzene. AUTHOR: PEER REVIEWER:	Human	8 hours

12 Principles of Green Chemistry

1. Prevention

• It's better to prevent waste than to treat or clean up waste afterwards.

2. Atom Economy

Design synthetic methods to maximize the incorporation of all materials used in the process into the final product.

3. Less Hazardous Chemical Syntheses

Design synthetic methods to use and generate substances that minimize toxicity to human health and the environment

4. Designing Safer Chemicals

Design chemical products to affect their desired function while minimizing their toxicity.

5. Safer Solvents and Auxiliaries

Minimize the use of auxiliary substances wherever possible make them innocuous when used.

6. Design for Energy Efficiency

Minimize the energy requirements of chemical processes and conduct synthetic methods at ambient temperature and pressure if possible.

7. Use of Renewable Feedstocks

• Use renewable raw material or feedstock rather whenever practicable.

8. Reduce Derivatives

- Minimize or avoid unnecessary derivatization if possible, which requires additional reagents and generate waste.
- 9. Catalysis
 - Catalytic reagents are superior to stoichiometric reagents.

10. Design for Degradation

 Design chemical products so they break down into innocuous products that do not persist in the environment.

11. Real-time Analysis for Pollution Prevention

• Develop analytical methodologies needed to allow for real-time, in-process monitoring and control prior to the formation of hazardous substances.

12. Inherently Safer Chemistry for Accident Prevention

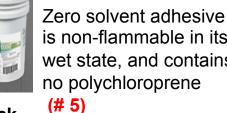
• Choose substances and the form of a substance used in a chemical process to minimize the potential for chemical accidents, including releases, explosions, and fires.

Principles*

Made with 67% plant-based adhesive and recycled material (# 5 & 7)

50% of the scrubbing fibers are made from agave plant (# 7)

3M[™] **Scotchbrite**[™] Greener Clean™



3M[™] Greener Post-it[™]

Tape made from over 53% plantbased materials (# 5 & 7)

3M[™] Fast Tack Water Based 19 Adhesive 1000NF

is non-flammable in its wet state, and contains

3M[™] Greener Magic™

*Courtesy of Keith Miller, 3M Sustainability

non-polyvinyl chloride (non-PVC) graphic films (# 3)

Thanks for joining us!

For more educational webinars or to learn about the GC3:

www.greenchemistryandcommerce.org

